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On Sufficient Conditions of a Measure-Theoretic
Probability Model of Measurements Describing
Quantum-Mechanical Probability
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ABSTRAGT

A general model of measurements based on the measure-theoretic probability theory
that leads to a finite-dimensional quantum-mechanical probability space is proposed.
Elementary events of the model are represented by states of the compound system consist-
ing of the abject and the environment. Events consist of curves of the corresponding
measuring processes, It is shown that three nontrivial premises are sufficient to derive a
quantum-mechanical probability space from the probability space. The first premise means
that any measurement changes the state of the object into another one. An infinitesimal
variation of the state of the object under an ideal measurement is represented by a tangent
vector to the state space T of the object. It is identified with a quantum-mechanical state
vector. Thus the tangent space T¢UI' at a certain £,€ ' is identified with the Hilbert
space of a quantum-mechanicat probability space. It is also shown that the validity of the
measuring apparatus implies the orthogonality of the infinite variations of states of the ob-

ject under the ideal measurement.
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1. Introduction

Probabilistic behavior of events is usually considered to be due to our lack of knowledge.
Such a concept of probability is formulated mathematically as measure-theoretic probability
theory. Probability in quantum phenomena, however, is not described by a single
measure-theoretic probability space, if we make quantum-mechanical observables correspond
to random variables on the measure-theoretic probability space. This is known as the no—go
theorem." This is the reason why some people consider that probability is not due to our
lack of knowledge hut is one of the essentials of Nature.

But if there is a possibility of probability in quantum-phenomena being described within
the framework of measure-theoretic probability theory. then it is possible for us to under-
stand probabilistic behavior of quantum phenomena at a deeper level. In this paper. we will
investigate how measure-theoretic probability theory leads to a finite-dimensional
quantum-mechanical probability space.

Section 2 is devoted to formulating finite-dimensional quantum-mechanical probability
spaces. In section 3, we will clarify the sufficient conditions under which a general model of
measurements for a physical object based on the measure-theoretic probability theory leads
to a guantum-mechanical probability space. It will be shown that three nontrivial premises

are used to derive the gquantum-mechanical probability space.

2. Quantum-mechanical probability space

There are several mathematical formulations of quantum-mechanical probability.2'3'4) A

formulation of quantum-mechanical probability theory that is sufficient for our purpose is pro-
vided in this section. The formulation has formal analogies with measure-theoretic probability
theory,S) but it contains new notions which are not contained in the latter. The aim of this
section is not to develop a general theory of quantum probability, but to fix terminology in
order to avoid the expected confusion. Since the formulation is concerned with only general
aspects of quantum mechanics, I think that it is consistent with other formulations.

A quantum measurable space (hereafter, QMS) (H.7) consists of two objects: A Hilbert
space H and a nonempty set P of projections on . In the case that H is a complex (real)
s—dimensional Hilbert space. we call (H.P) a complex (real) »-dimensional quantum
measurable space.

H is an analogue of a set of elementary events, and P is an analogue of a set of
events in measure—theoretic probability theory. P is not always the set of all projections on

2.6 exists. Even if no superselection rule exists. we should res-

. if a superselection rule
trict P to a set of projections that can have explicit physical meaning. because we do not
know generally how to measure a guantity represented by an arbitrary self-adjoint oper-

ator.” P is usually assumed to form an orthomodular lattice.?
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The properties of a QMS depend on its dimension. Two-dimensional QMSs, infinite-
dimensional QMSs and #-dimensional QMSs (3 <{ » <(®0) have different features.® In parti-
cular, treatment in the infinite-dimensional case, that is the case of usual quantum mecha-
nics, is technically rather complicated; ¥ what we are to argue, however does not relate to
the specifics of the infinite dimension. Thus we restrict our consideration to finite-dimensional
cases in this paper.

We will say that two complete orthonormal systems (hereafter, CONSs) {#;} and g}
of i are equivalant, if and oniy if there exists a permutation ¢ of 11.2,..., dim H| and
scalars ¢ ,’s such that #; = { ;vs sy We fix a representative of each equivalence class of
CONSs, and we will refer an equivalent class by its fixed representative.

In an n-dimensional QMS (H.P). taking an orthogonal set of » projections in P whose
ranges are one-dimensional subspaces, we can construct a CONS by picking out a unit vec-
tor from the ranges of each projection. We call such a CONS (more precisely, the equiva-
lence class) a conmtext. We denote the set of all contexts by C.

When a linear operator on H is diagonalized in a CONS that is a representative of a
context @ € (. we say that the linear operator belongs to the context €. A linear combina-
tion with real coefficients of projections in P that belong to a context is called an observable.
The set of all observables is denoted by O.

As pointed out by Wiener and Siegel,w) degenerate operators play a subtle role in
hidden-variable interpretation. Hence we introduce a similar notion: In a QMS (H.P), an
observable C € O is said to be degenerate within C. i and only if C belongs to different
contexts ¢, £ € C simultaneously. The zero and the identity are #rivially degenerate
observables.

A simple example of a degenerate observable within C is given in Ref. 11, Chap. 6,
Sec. 5. p.121. Another simple example, though artificial, is the following: C consists of &
and B, where @ = 11,0007, (0,1,007, (0,0.D7} and 8 = {(1.0.0:7, .2 1VDT.
0142, 179 T Put

100 100 100
A=lo 10}, B=[00 1], ¢c=[000]: (0
00 2 01 0 00 0

A and B belong 10 @ and B . respectively. but C belongs to the both contexts, i.e.,
C is degenerate within (.

A quantum-mechanical probability space (hereafter, QMPS) (H.P, ¥) consists of a
QMS (H,P) and a density operator ¥ . which satisfies ¥ ' = &, ¥ > 0 and Tr¥ = 1. ¥
is called a quentum-mechanical staite. ¥ is an analogue of a probability measure in

measure-theoretic probability theory.
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The minimal interpretation of this mathematical formulation of 2 QMPS (H. P, ¥) is
given as follows:
1. An outcome of a measurement of a physical quantity that is represented by an observ-
able A € (O belongs to the spectrum of 4.
2. The expectation value of the outcome of a measurement of 4 € () performed on a

gquantum-mechanical state ¥ is given by
Eu(4) ;= Tr(dw). (2)

If a quantum-mechanical state is pure, then by taking the corresponding unit vector ¥

in ‘H instead of a density operator. (2) can be written as
Ew(d) = (¥, Av), (3)

where ¥ € H. |wl%:= (w, w) =1, {-, -) denotes the inner product in # which is

antilinear in the first entry, linear in the second entry.

3. A general model of measurements

In this section, a general model of measurements based on a measure-theoretic probabil-
ity space is formulated and it is shown how the model has quantum-mechanical probability
space structure.

Let T' be an m-dimensional analytic manifold whose point represents a state of the ob-
ject on which measurements are performed. In general, a measurement process is described
as a time evolution of a state of a compound system consisting of the object and the environ-
ment surrounding it. In order to discriminate differences in the environments, we introduce
a parameter A. We denote the parameter space by A. Then a state of the compound sys-
tem is represented by a point in the product space © of I" and A, i.e., @ = TxA. We
denote the projection of Q onto I' by 7 which is defined as # ({&, A))i= & for ¥V (&,
e 0,

It should be remarked here that there is a subtlety in the interpretation of the environ-
ment. The environment 4 € A does not always represent a state of only the measuring
apparatus. It is more likely to be true that the object is not an isolated system and the en-
vironment containg a part of the object that is not handled by such a mathematical concept
as an analytic manifold. The quantum field theory suggests this; an electron is not an iso-
lated particle, but is surrounded by a cloud of photons,

Though the measurement process depends on which property is measured, by including
this difference into the parameter A1 it is possible to represent time evolutions of states
under any measurement processes by a single flow. The flow is a set { T ;| ;cr of map-
pings of Q into Q that is parametrized by a real number s and enjoys that T,0T = T,

T = 1g. For the sake of convenience, by reparametrizing the time parameter s, we can
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assume that a measurement process starts at s = 0 and finishes at 5 = 1 without loss of
generality .
For €,, £, € T put

g, e={w € Q| m(w)=¢,, there exists w; € { such that 7 (wy) = &,

and we =T 1(‘“1)} .

E¢ . ¢, is an event in which the state of the object prepared in the state €; € T be-
comes £y & [ after a measurement. Let 8 be a @ -algebra that contains £ z , ¢, (V ¢,
¢, € T). Then (Q, B) is a measurable space.

In general, since various states of the compound system could be prepared prior to
measurements, outcomes of the measurements become probabilistic. Let P be a probability
measure on (Q, B) that describes this probabilistic behavior of the prepared compound sys-
tem.

We denote by We (&; P) an unnormalized “probability” that the state of the object

that is in a state o € ' before a measurement becomes § & T after it, i.e.,

We (& Pli= P(E¢,2)- (4
It is clear by this definition that

We (&:P) > 0for Yo & € T. {5)

We can now express the first and second premises of our model of measurements.

Premise 1. There exists £y € I' such that
We (g P) = 0. (6)

Remark. This premise means that the object changes its state from ¢4 to anocther after any
measurement. It does not mean nonexistence of the state &,.
Premise 2. W, {(<{: P) is analytic for ¢g in a neighbourhood of &g in a local coordinate
system (&€L,..., &™),

By these premises and (5), we can see that

Proposition 1,

82W¢'U(f§05 P)

We (& P) = ‘%’Efjﬂ PYTIPYT

(&7 — &N (&7 - &) + 0 @&, £9Y),

(@(&, eoi=yf X0y (&7 - ED2—0).

Suppose that we obtain a value ; € R as an outcome of a measurement of some prop-
erty. There exists @y € Q such that @ (wy) = ¢ and this measurement process is rep-

resented by a curve | T ,(wg) | 0 < s <{ 1} in ©. The state of the object after the
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measurement is 7 ( T ;{wgy)). Since an ideal measurement is considered as a limit of a sequ-
ence of measurements such that the variation of the state of the object approaches zero, the

variation of the object’'s state under an ideal measurement is represented by an infinitesimal

variation ¢ that is a tangent vector at ¢o. In the local coordinate system (&', ..., &™),
v € Tg,I' is written as
v = mvi (—*?-*“) ¢ €R (7)
i=1 a3’ o '
Define a symmetric tensor Wp covariant of order 2 by
m 9*We (&4:P) : :
Wp = %Z Z et ] iy gEd (8)

G allall

The unnormalized “probability” we(v) for an ideal measurement that produces an infinitesim-

al variation v € T, T is expressed as

wp(o} :=Wply, v). (9)
By (5) and proposition 1, we can see that

wp(v) >0 for Yo € T¢I (10)

and Wp is positive semidefinite.

The third premise of our model is the following:

Premise 3. If an ideal measurement that causes an infinitesimal variation v € T¢ ' of the
object’s state gives a value g; as the outcome, then an ideal measurement that causes the
Infinitesimal variation —v gives the same value g; as [ts outcome.

Moreover, if there exists an almost complex structure f on I", then an ideal measurement
that causes the infinitesimal variation fv € Ty I' of the object’s state gives the same value
@ as its outcome, too.

Remarks. It is clear that the first part of the above premise is required for the invariance of
measurement processes under time reversal (s b+ -s).

The second part requires some symmetry of measurement processes. We do not yet
appreciate its meaning fully, but the second part is necessary to deal with complex num-
bhers. We try to find a candidate of this symmetry in the following. By the existence of the

almost complex structure f. the dimension s of I' must be even; there exists a natural

number # such that m = 2n. Let (..., £, p'..... p™ be a local coordinate system such
that
9 ) 2] ]
—s = -, - = - -, ¢i=1,...,n, (11
Y ar 7 ap' ax )
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Put # := (f+ﬁpi) /2 and 2= (¢ - ,/:ip")/z f=1,.... n). Then by extending J to the

complexification of T¢ ' by linearity, we have

o 2 =] a2
— = -1 —, — = =l —, i =1,...,n (12}
L R Sl S n
Let H(z ... .. 2%, Z..... ') be a Hamiltonian. The » Hamilton's canonical equations of mo-
tion become
dz' o .
W——\/—_lg, i =1...,n. (13)

Consider a transformation & v (' defined by

C;’ = _,\/__lzi. {14)

Then
2 a2 a
A Bl arer
3l 3z az
3 d d
—_— = —./-1 - = J—
8t ‘/_aE’ jaz‘

Under this transformation, Hamilton's cancnical equation of motion becomes

Lis ”\/__laH(\/—Tgl,...)

di 5T (15)

If the Hamiltonian H depends on only |2'|2,..., | 2% | % then the measurement process is
invariant under this transformation.

By premise 3, if a measurement process whose outcome is ¢; causes a variation v € T
¢, of the object’s state, then an outcome of a measurement process that causes a variation
~» (or fv) of the state is ;. Therefore the unnormalized "probability” of the outcome being

a; is given by

Pp(e):= wpv) +wpl{—0v) (16)
(or Pp(pi= wply) +wp(—v) +wp(Jv) +wp(—f‘v))- (17)

It is clear that
CPp(—0) = Pp(n). (18)
For Pp defined by (17), it is also clear that
Pp{Je) = Pplv) (19)

and (18) hold.
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Hereafter we restrict our considerations to the case that an almost complex structure [
on ' exists. because the other case is easy to handle. We denote the complexification of
T¢I by T¢ Tt The domain of #p defined by (17) shall be extended to T¢,I'C in the

following. Firstly, we define a positive semidefinite tensor ® p covariant of order 2 on T: T

by

Dplu, v):;= 2Wpln, v} +2Wp{fu, Jv) for Yu, v € T¢ I'. {20)
Clearly, Pp(v) = ®p(p, v). A computation yields

D plfu, Jv):= Oplu, v). (21)

We extend ® p and J to the complexification T;GI‘C of T¢ I' by linearity. We denote the
extensions by the same symbols as before.

Proposition 2,

o 2 a
Ppl—s, — = @ -, —) = 0. (22)
PYed ' a7 P 57
proof.
a a 3 2 g
Spl-——, —5) = @ =, /=) = Oply-1——F, V-1—F) =
P az’) P(jaz‘ ]az’) 2l P - az’)
- ﬁz o) (i @ ) = - @ (i _i)
o ' a7 oz ' a7
Hence @ p(— 2 ) =0 that ®pl—rs | —) 0.]
— ., ) = % t R _—, - = (.
ence ®p 57 P n the same way, we can see that ®p Py 57
A straightforward calculation yields
Proposition 3,
] 7} a a2 a ]
[02] (— s —) = [1)] —_—, —) + O (—- . —)
PoE 0 a4 PoT " aw Prar " ap
3 2 2] d
L P pl—, —) - Opl—F, —FJi.
Viiop a7 ' ap Y ap”

We can define the unnormalized “probability” 2p° of complex number version by
ppw):= ©p, w), u € TeIC. C(23)

We can show by a straightforward calculation

. a .3 .9
P ition 4. For Yu = L7, ¢*—— € T T putv = L ;Rec—F+Ime'—).
roposition or =103 Z, put » 1(Rec Py e ap‘)

Then we have

Pt () = 20p(n). (24)
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Proposition 5. For Vu € T¢ ',

PeC(w) > 0. (25)

proof. Clear by proposition 4. D

Let a1...., a, (€ R) be possible cutcomes of measurements of a property of the object
and @4,....a, € Tch‘C be the corresponding infinitesimal variations of states of the ob-
ject, respectively. We say that @; is a possible outcome of a measurement of a property if it
is possible to prepare the object and the environment that gives the outcome @; with cer-
tainty. This preparation is necessary to calibrate the measuring apparatus for the property.
If it is impossible to prepare such states of the compound system that gives an outcome g;
with certainty, then the measuring apparatus is invalid.

Proposition 6. Infinitesimal variations @,,..., @, € T{OFC of states of the object under
measurements of a property are linearly independent in T'¢ I'C.

proof. Suppose that @,,..., @, are linearly dependent. Then one of them, say 4, is a
linear combination of others, i.e.,

a; = X cay (26)

J¥E

where at least one of ¢;’s (7 # i) is not zero. Let ¢; be the nonzero coefficient.
By the validity of the measuring apparatus, it is possible to prepare an ensemble, repre-
sented by a probability measure P;, of compound systems such that the unnormalized

“probability” pPa,c enjoys the following properties:
pp,Cla) + 0, ppllay) = 0for Vj # 1 @n
By Schwartz's inequality
| ©p, (75 ay) |12 < Op,(a;, a;)@p, (T; ap). (28)

Since @p,(@; a;) = Pp C(a;) =0 forj # I we have @p,(&; ap) =0forj *+ L

pPa,C(a:') = _%_fjﬂk@}’a,(aj, ap = et C[)pa‘[ﬁf, ap * 0. (29
ki
Since ¢ *+ {, this contradicts definition of .DpalC. Therefore @,,..., @, are linearly indepen-
dent. D
Let aq...., a, € T,:OI‘C be infinitesimal variations of states of the object under
measurements of some property. By proposition 6, @;,..., @, forms a basis of T¢ OI“C. Let
{og...., a,l be the dual basis, i.e..
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gla;) = &, L j=1...,mn {30

where d; is the Kronecker's delta symbol.

We define an inner product <+, > on T,gul“C by

<(1‘-, v):= 0',‘(1}), e T¢UFC,

(u, vri= (o, u), u, v € Tg 'C
Since dim TgoI'C = # < oo, Tl C is a Hilbert space, which we denote by .
Put

Py):= 2p°(v), Yy € T.{OFC. (31}

z ;'!-1 Pp C( a z')

Since LR 9P(ey) =1, ¥{a;) is a probability of the outcome being a;. By taking an appropri-
ate set P of projections on H., (H, P, ¥) becomes a QMPS. Thus in our model of
measurements. a guantum-mechanical state ¥ represents an ensemble of states of the com-
pound system represented by a probability measure P.

If a quantum-mechanical state ¥ is decomposed as
P = 1 P1tes (lﬁz, {32)

where ¥; and ¥; are different quantum-mechanical states, ¢;, ¢z > 0 and ¢;+¢p = 1,
then we say that ¥ is a quantum-mechanical mired state. A quantum-mechanical pure state
is one that is not a guantum-mechanical mixed state.

lemma. Let #,,.... B, be infinitesimal variations of states of the object under measurements
of a property to which values #;,..., &, as outcomes correspond, respectively. The
quantum-mechanical state ¥ that validates that the measuring apparatus can measure the

value # is a quantum-mechanical pure state

1

m(', BBy, ). {33)

‘Pb](') =

proof. In our model, ¥ & is given by a corresponding ensemble represented by a probability

measure Py, i.e..

@y () = Op, 5, ). (34)

Ei"Pb]C( a;)

Let ¥,..... Y, be a complete orthonormal system of I that gives the spectrum decomposi-

tion of the right-hand side of (34) as below.
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n

Pp @) = Dele, YRV v, ¢ 2 0. (35)

i=1

Since L%, (a3 = 1, Z;¢; = 1 holds. We normalize the B;’s and denote them by Ej’s.

respectively. If there are more than two nonvanishing ¢;’s, then

P (B < X By v(v. By = By By =1 (36)
f 1

i=

While, for a quantum-mechanical pure state ¥ 5 defined by
wg (=, BBy ), (37)

TWwp (o) =1 and Wﬁl(ﬁl) = 1. Thus the probability of the outcome being &, for ¥, is
less than that for ¥ g . This means that there are some events in which the outcomes are
not by for ¥, . This contradicts that the outcome ) is obtained with certainty for ¥, ,
Hence all ¢;"s vanish except one, say ¢;. Then since ¢; = 1, ¥ (1) = (-, ¥p (¥, ).
Since ¥, (#1) must be unity, we have 7, = ¢/? §,. Therefore Pp, () = () BoB, '>‘D
Proposition 7. Infinite variations f,,...., B, under measurements of a property of the ob-
ject form an orthogonal system in H.

proof. Let ¥, be the guantum-mechanical state that validates the outcome # corresponding
to 8;. P, (.3_,) ={f8, ﬁ;)é,-j holds.

By the above lemma, ¥, is given as

1

() =m(', BBy ). (38)
Therefore
<Bi' ﬁ]) = (ﬁiv B:)é]} (39)

This completes the proof. |:|

The following proposition is clear from proposition 7.
Proposition 8. Normalized infinite variations I Teeros B » under measurements of a property
of the object form a complete orthenormal system in H. Therefore they give a context # in
(M, P}.
As a consequence, we have shown the following theorem,
Theorem. Probabilistic behavior of outcomes of the ideal measurements for the model in this
paper based on measure-theoretic probability theory with premises 1 to 3 is described by a
QMPS.
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