

Development of a Management Support System

on the Windows Platform (III-Part 3):

Message Pumping and Message Handling

Hiroshi NOTO

Contents

1.Introduction

2.Windows Programming Model

3.Message Map Data Structure and Message Map Macros

4.Windows Message Components and Message Type in Windows

5.How MFC Uses Message Maps and Handles Messages

5.1 Message Handlers as Window Procedures

5.2 Message Mapping Architecture

5.3.Messages Passed to Window

5.3.1 Parameters Passed Over by Windows

5.3.2 Windows Window Handles and MFC CWnd-Derived Objects

5.4 Message Handling Mechanism

5.4.1 CHandleMap Global Thread State Object

5.4.2 AFX THREAD STATE Object with Message

5.4.3 Window Object’s Window Procedure WindowProc()

5.4.4 Message-Handling inside CWnd::OnWndMsg()

5.5 WM COMMAND in Commands and Control Notifications

5.5.1 Handling WM COMMAND

5.5.2 OnCommand()

5.5.3 Entry for Message in Message Map

5.5.4 AfxDispatchCmdMsg()Calling Message Handler

5.5.5 Standard Sequence of CCmdTarget-Derived Classes

Section 5 How MFC Uses Message Maps and Handles Messages

5.3.Messages Passed to Window

Up to the previous subsection,we have seen that the MFC class library can subclass each

of the MFC controlled windows to install AfxWndProc() as the universal window procedure

by hooking up the CWnd-derived windows’creation through the AfxCbtFilterHook()

callback function. In other words, the computer-based training (CBT) hook of the

― ―33

北星論集(経) 第45巻 第２号（通巻第49号) March 2006

ry on Windows,WM COMMAND in Commands and Control

Notifications,Mess

Key words:Command-Routing and Message-Dispatching Architecture,C＋＋ with MFC (Microsoft

Foundation Class)Libra

ge,Standard Sequence of CCmdTarget-

Derived Classes

Entry with Mess age Map a

ン
が
入

フ

場
合
は
良
い
で
す
。

る

★
★
注
意
★
★

能
登
論
文
は
単
語
は
す
べ
て
改
行
し
ま
せ
ん
。

ハ
イ
フ
ン
を
自
動
発
生
さ
せ
な
い
）

単
語
と
し
て
ハ
イ

CWnd-derived object can create a window with the required class and get the window wired

to the generic window procedure AfxWndProc(). From now on all the messages and

commands for the window that we are responsible for will go to the AfxWndProc().

In this subsection we take a close look at the processes that the AfxWndProc()goes

through to handle the messages and commands that the window receives, by the MFC

message mapping architecture, i.e. the command-routing and message-dispatching

architecture.

5.3.1 Parameters Passed Over by Windows

We first very briefly summarize the parameters to be passed over by Windows to the

functions in concern. A computer-based training (CBT) application, in the present case

AfxCbtFilterHook()has three parameters:

AfxCbtFilterHook()uses those parameters to receive useful notifications from the system:

int code specifies a code that the hook procedure uses to determine how to process the

message such as HCBT CREATEWND. AfxWndProc() is waiting for HCBT

CREATEWND code that signifies‘a window is about to be created’.

WPARAM wParam specifies the handle to the new window.

LPARAM lParam specifies a long pointer to a HCBT CREATEWND structure containing

initialization parameters for the window. The parameters include the coordinates and

dimensions of the window.

Windows calls back AfxWndProc()with the four parameters in the generic LRESULT/

WPARAM/LPARAM format:

Two of them are the same that AfxCbtFilterHook()receives. The handle type identifier

HWND identifies the handle to a window. Its variable hWnd specifies the handle to the

window which the message is directed to. The message (UINT nMsg)sent to the window

needs to be handled by the message map macro and the handler. An MFC-based program

deals with two kinds of messages :(1)regular window messages(like WM MOUSEMOVE,

WM LBUTTONDOWN)and (2)commands (messages generated from menus and controls

and represented by WM COMMAND message). Message maps handle both kinds of

messages. Among the window messages, there is a specific message called WM

QUERYAFXWNDPROC which is sent very early in the window creation process. The

message determines if the WndProc is AfxWndProc or not. The procedure AfxWndProc

北 星 論 集(経) 第45巻 第２号（通巻第49号)

― ―34

returns 1.

5.3.2 Windows Window Handles and MFC CWnd-Derived Objects

MFC represents windows in two ways:(1)by a unique system-defined window handle and

(2)by the C＋＋ class representing the window. MFC,on the other hand,provides two areas

of functionality: (1) wrapping the regular Windows API functions (like Create() and

ShowWindow())and (2)giving higher-level MFC-related functionality,like default message

handling DefWindowProc().

Native Windows code deals with window handles. MFC,on the other hand,is designed

to work with,in general,CWnd objects. CWnd,therefore,encapsulates all the Windows API

functions that take a window handle:CWnd wraps the API functions maintaining their

respective member variables called ‘m hWnd’which represent regular API-level window

handles (i.e.HWND). When we call a Windows API function in a CWnd-derived class,the

CWnd version of the function uses the standard API function passing the object’s window

handle (m hWnd). MFC frequently mixes native handles with MFC wrappers (i.e.

CWnd-derived objects). The application framework requires a uniform mapping between

window handles and the C＋＋ objects that wrap them (window handles).

It is,therefore,very important in the Windows application development with MFC,to

understand the difference between native window handles (HWNDs) and the MFC class

objects representing windows in the Windows’message processing that features the handles

to the windows and the calls to their member functions or handlers. For example,when

Windows calls a window procedure,Windows passes a window handle as the first parameter.

MFC’s dispatch mechanism,however,works with CWnd-derived objects. In order for the

message dispatching to work,MFC has to figure out which CWnd-derived object is associated

with a particular handle.

It is easy to get the window handle from a CWnd object because the window handle is

a data member of the class. However,there is no way to get from the window handle to the

CWnd object without some extra way. MFC uses a class called CHandleMap to relate

CWnd-derived objects to window handles . The CHandleMap class maps window handles

to MFC Windows objects. This means that when a window is created using CWnd (or

CWnd-derived class), the window handle is attached to the CWnd object. MFC needs a

mechanism like this: Windows uses handles and MFC uses objects. The application

framework code can deal with C＋＋ objects rather than window handles:when Windows

calls a callback function,it passes a window handle as a parameter;MFC needs to translate

that parameter into something it can deal with, i.e. CWnd-derived object. The

CHandleMap carries two members of type CMapPtrToPtr. They are called

m permanentMap and m temporaryMap. CHandleMap uses the CMapPtrToPtr

capabilities to maintain the relationship between window handles and their associated MFC

objects. The permanent map,m permanentMap,maintains the handle/object map for the

life of a program. The temporary map, m temporaryMap, exists for the duration of a

Development of a Management Support System on the Windows Platform (III-Part 3):

― ―35

message. The permanent map stores those C＋＋ objects that have been explicitly created by

the developer. Whenever a CWnd-derived class is created,MFC inserts the mapping into the

permanent dictionary. The mapping is removed whenever CWnd::OnNcDestroy()is called.

5.4 Message Handling Mechanism

Now we get back to the window procedure (or window handler, or window function),

namely AfxWndProc()here in VisualC＋＋ 6.0 with MFC 4.2 library . It should

be noted as just described that there exists a single specific message that AfxWndProc()

handles:WM QUERYAFXWNDPROC (see List 5-6 in (III-2)). If the incoming message is

WM QUERYAFXWNDPROC,AfxWndProc()returns value 1. Applications can send the

WM QUERYAFXWNDPROC message to find out if the window is an MFC window using

MFC’s message-mapping system. If the message is not WM QUERYAFXWNDPROC,

AfxWndProc()goes on to process the message. That means all other massages are routed

through the message map.

5.4.1 CHandleMap Global Thread State Object

In AfxWndProc()(List 5-6 in(III-2)),the framework retrieves the C＋＋ object associated

with the focused window by using CWnd::FromHandlePermanent()which is shown in List

5-10:the framework calls CWnd::FromHandlePermanent() passing it the focused window

handle“hWnd”. Then CWnd::FromHandlePermanent()looks up the entry in the permanent

handle map and returns the existing MFC object(pWnd)that wraps the passed handle. This

function does not create any temporary object.

List 5-10.CWnd::FromHandlePermanent() in WINCORE.CPP

Hereafter the series of our articles“Development of a Management Support System on the

Windows Platform” will be abbreviated as (I),(II),(III-1)or (III-4).

― ―36

北 星 論 集(経) 第45巻 第２号（通巻第49号)

We look through just more in detail the code in CWnd::FromHandlePermanent(). The

afxMapHWND()function gets the global handle map (pMap)of the class CHandleMap that

is explained in the previous subsection and returns the pointer to the handle map. In the

afxMapHWND()function (see List 5-11)we find that the returned handle map is a member

of the AFX MODULE THREAD STATE object that is obtained by a call to

AfxGetModuleThreadState().

List 5-11.afxMapHWND()in WINCORE.CPP

AFX MODULE THREAD STATE is shown in List 5-12 below and is basically a class

keeping information about the current thread state. MFC keeps a global object of this type

on per thread basis (pState in the present case).

List 5-12.AFX MODULE THREAD STATE in AFXSTAT .H

― ―37

Development of a Management Support System on the Windows Platform (III-Part 3):

In List 5-12 we can see all handle maps of the concerned Windows objects like Window,

Menu, DC, GdiObject and ImageList. In the present case AFX MODULE THREAD

STATE returns the corresponding member variable of the global thread state object

m pmapHWND which afxMapHWND() returns as CHandleMap pMap pointer (i.e.

pState >m pmapHWND)(List 5-10). List 5-13 shows AfxGetModuleThreadState().

List 5-13.AfxGetModuleThreadState() in AFXSTATE.CPP

In AfxGetModuleThreadState() we find that the object of AFX MODULE THREAD

STATE is brought about by AfxGetModuleState()through the following code which is a bit

complicated.

AfxGetModuleState()is a member function of AFX MODULE STATE class,as defined in

List 5-14. The definition of the class AFX MODULE STATE is shown in List 2-2 in (II),

― ―38

北 星 論 集(経) 第45巻 第２号（通巻第49号)

which in turn keeps track of the current module state.

List 5-14.AfxGetModuleState() in AFXSTATE.CPP

The AfxGetModuleState() function defines pState which copies the thread state object

afxThreadState that instantiates the AFX THREAD STATE class. The instance of

afxThreadState is realized through the macro THREAD LOCAL which is found in AFX

STATE.CPP (List 5-15).

List 5-15.Thread local portions of the thread state in AFXSTATE.CPP

Here afxThreadState is an instance of the CThreadLocal object (see below). The AFX

THREAD STATE class is elaborated later below in List 5-21. The object “m thread”in

(＊)above is an instance of the CThreadLocal class and the function of GetData()is a member

function of the CThreadLocalObject class. Why and how does the above code make sense?

The reason is the following. The class AFX MODULE STATE in List 2-2 in (II)reads at

the very bottom of its definition like this (List 5-16):

List 5-16.Class AFX MODULE STATE(mostly omitted except for THREAD LOCAL())in

AFXSTAT .H

― ―39

Development of a Management Support System on the Windows Platform (III-Part 3):

And the macro THREAD LOCAL is defined in AFXTLS .H (List 5-17). MFC gives us some

classes to store information private for each thread with the THREAD LOCAL macro.

List 5-17.Macro THREAD LOCAL()in AFXTLS .H

Finally the class CThreadLocal is defined like this (List 5-18):

List 5-18.Class CThreadLocal in AFXTLS .H

The AfxGetModuleThreadState()function in List 5-11,gets the pointer pResult to pState >

― ―40

北 星 論 集(経) 第45巻 第２号（通巻第49号)

m pModuleState that the AfxGetModuleState()returns, the latter being the member

variable of AFX THREAD STATE.

Thus in the class AFX MODULE STATE, the CThreadLocal object “m thread”is

defined. The CThreadLocal is a template class and the data TYPE is substituted for

“AFX MODULE THREAD STATE”. In CThreadLocal,AFX INLINE TYPE GetData()

function is defined as its member function where CThreadLocalObject::GetData()is called

and the returned value is casted from “CNoTrackObject”to the type “AFX MODULE

THREAD STATE”as a pointer (“pData”). In this way the code AfxGetModuleState()>

m thread.GetData()in(＊)at page 38 and in List 5-13 returns the current thread local instance

of AFX MODULE THREAD STATE type as “pData”and afxMapHWND() returns the

global handle map of the current thread local instance as“pState >m pmapHWND”that is

local to thread in List 5-11.

5.4.2 AFX THREAD STATE Object with Message

Now we get back to CWnd::FromHandlePermanent()in List 5-10. The framework calls

LookupPermanent() function. CHandleMap::LookupPermanent() is expanded inline like

List 5-19.

List 5-19 .CHandleMap::LookupPermanent in WINHAND .H

In the permanent handle map does the function m permanentMap.GetValueAt()look up the

entry of our present window handle (HWND hWnd)which is now passed to its argument

HANDLE h that is then casted to LPVOID. Here the data type HANDLE represents 32-bit

unsigned integer handle to an object and LPVOID represents the generic pointer type.

Finally the looked-up object of the present window ends up in the object casted from CObject

to CWnd.

The framework returns AfxCallWndProc()in AfxWndProc()(in List 5-6 in (-2)). It

should be noted that in addition to the first parameter (pWnd)as the pointer to a CWnd

object,AfxCallWndProc()also has the second parameter (hWnd)as the window handle that

is assigned to the CWnd object. This allows AfxCallWndProc()to maintain the record of the

last message processed for use in handling exceptions and debugging,since it is that window

that the message is sent to. In List 5-20 shown is AfxCallWndProc(). We notice how it

looks like any other window procedure,except that the parameter includes a CWnd pointer

as well.

― ―41

Development of a Management Support System on the Windows Platform (III-Part 3):

List 5-20.AfxCallWndProc() in WINCORE.CPP

As shown above AfxCallWndProc() first examines the message to see if it is a

WM INITDIALOG, in which case it calls AfxPreInitDialog(). This function is for the

auto-center dialog feature: MFC caches certain styles before the dialog handles

― ―42

北 星 論 集(経) 第45巻 第２号（通巻第49号)

WM INITDIALOG. If it is appropriate to center the window(the window is still not visible

and has not moved), then MFC automatically centers the dialog against its parent. The

following sentence seen in AfxCallWndProc() in List 5-20 means that pThreadState is an

object of the pointer type to AFX THREAD STATE,which is shown in List 5-21 and is

implemented through the definition of thread local portions of the thread state in List 5-15.

The identifier afxThreadState is an instance of the CThreadLocal object. The function

AfxCallWndProc()saves the window handle(hwnd),the message(message),and the WPARM

(wParam) and the LPARM (lParam) in the current thread state member variable,

pThread >m lastSentMsg. The message data structure(MSG)form is represented in Figure

4-1 in (III-1).

List 5-21.class AFX THREAD STATE in AFXSTAT .H

― ―43

Development of a Management Support System on the Windows Platform (III-Part 3):

5.4.3 Window Object’s Window Procedure WindowProc()

The function AfxCallWndProc() returns the window object’s window procedure as

lResult: pWnd >WindowProc(nMsg, wParam, lParam). Here shown is CWnd::

Windowproc()in List 5-22.

List 5-22.CWnd::WindowProc() in WINCORE.CPP

CWnd::WindowProc() is virtual and overridable. CWnd::WindowProc() calls CWnd::

OnWndMsg(). CWnd::OnWndMsg() is also virtual and overridable. CWnd::OnWndMsg()

indicates whether or not a windows message was handled. It returns nonzero value if the

message was handled;otherwise it returns 0. If OnWndMsg()returns FALSE (i.e.0),then

― ―44

北 星 論 集(経) 第45巻 第２号（通巻第49号)

CWnd::WindowProc()calls CWnd::DefWindowproc()that handles the messages irrelevant to

our application. CWnd::DefWindowproc() is virtual and overridable as well. Thus our

study of Message Handling procedure now goes into the CWnd::OnWndMsg()function.

5.4.4 Message-Handling inside CWnd::OnWndMsg()

Now Let us see in detail how MFC uses Messages and Message Maps. As explained in

4.2 Three Message Categories in(III-1)and 5.2.1 Command-Routing and Message-Dispatching

in (III-2), an MFC-based program deals with two kinds of messages:(1) regular window

messages(like WM MOUSEMOVE,WM LBUTTONDOWN)and(2)commands(that is,the

messages generated from menus and controls and represented by WM COMMAND

message). Message maps handle both kinds of messages. The message-handling action

really begins inside CWnd::OnWndMsg(). List 5-23 shows(some pared-down)source code in

WINCORE.CPP. Let us briefly walk through OnWndMsg()before tracing messages through

it. First, OnWndMsg() tries to filter out certain messages from the beginning:

WM COMMAND, WM NOTIFY, WM ACTIVATE, and WM SETCURSOR. The

framework has special ways of handling each of these messages. If the message is not one

of those just listed,OnWndMsg()tries to look up the message in the message map. MFC

keeps a message map entry cache that is accessible via a hash value. This is a great

optimization because looking up a value in a hash table is much cheaper than walking the

message map. CWnd::OnWndMsg()is where commands and regular window messages go

their separate ways. If the message is a command message (that is, message ＝＝

WM COMMAND),then CWnd::OnWndMsg()calls OnCommand()(i.e.CWnd::OnCommand()).

Otherwise,it retrieves the window object’s message map to process the message (more on

that in (-4)). Let us examine the command routing first.

List 5-23.The CWnd::OnWndMsg()(pared-down)in WINCORE.CPP

― ―45

Development of a Management Support System on the Windows Platform (III-Part 3):

― ―46

北 星 論 集(経) 第45巻 第２号（通巻第49号)

― ―47

Development of a Management Support System on the Windows Platform (III-Part 3):

― ―48

北 星 論 集(経) 第45巻 第２号（通巻第49号)

5.5 WM COMMAND in Commands and Control Notifications

First we follow a WM COMMAND message through the application framework to see

where it is handled .

5.5.1 Handling WM COMMAND

We take command messages. Windows messages are usually sent to the main frame

window,but command messages are then further routed to other objects. As is explained

below the framework routes commands through a standard sequence of command-target

objects,one of which is expected to have a handler for the command. Each command-target

object checks its message map to see if it can handle the incoming message. The first stop

a command makes on its way to its designated command target is CWnd::OnCommand().

5.5.2 OnCommand()

Since CWnd::OnCommand()is a virtual function,the framework calls the correct version.

Suppose the message was generated for the main frame window,the framework calls the

CFrameWnd version of OnCommand()(List 5-24).

List 5-24.CFrameWnd::OnCommand()in WINFRM.CPP

― ―49

Development of a Management Support System on the Windows Platform (III-Part 3):

By this point,the message is pared down to two parameters:WPARAM and LPARAM in the

arguments of the function. If the message is a request for on-line help,the framework sends

a WM COMMANDHELP message to the frame window. Otherwise,the message is passed

on to the base class’s OnCommand(),CWnd::OnCommand().

List 5-25.CWnd::OnCommand()in WINCORE.CPP

― ―50

北 星 論 集(経) 第45巻 第２号（通巻第49号)

CWnd::OnCommand()examines the LPARAM which represents the control that sends

the message if the message is from a control. If the command was generated by a control

the LPARAM contains the handle of the control window. If the message is a control

notification(like EN CHANGE or LBN CHANGESEL),then the framework performs some

special processing. If a notification message is from the child window message,

OnCommand()sends the last message to the child window(i.e.ReflectLastMsg (hWndCtrl)).

OnCommand(),then,returns.

Otherwise (i.e. hWndCtrl equal to NULL), CWnd::OnCommand()makes sure that the

user-interface element that generated the command has not become disabled(for instance,a

menu item is not undefined)and passes the message on to OnCmdMsg()(which is also virtual).

Because the frame window is still trying to handle the message,CFrameWnd::OnCmdMsg()

is the version that is called. This function is found in WINFRM.CPP (List 5-26):

List 5-26.CFrameWnd::OnCmdMsg() in WINFRM.CPP

― ―51

Development of a Management Support System on the Windows Platform (III-Part 3):

CWnd::OnCommand() passes NULL for pExtra and pHandlerInfo when it calls

CFrameWnd::OnCmdMsg(),because this information is not needed for handling commands

(see the last two arguments in CFrameWnd::OnCmdMsg()in List 5-26). List 5-26 tells us that

CFrameWnd::OnCmdMsg()pumps the message through the application components in this

order: the active view→ the active view’s document→ the main frame window→ the

application.

To route the command to the active view,CFrameWnd::OnCmdMsg()tries to find the

frame’s active view using CWnd::GetActiveView(). If CFrameWnd::OnCmdMsg()succeeds

in finding the frame’s active window, it calls the active view’s OnCmdMsg() (pView >

OnCmdMsg(nID,nCode,pExtra, pHandlerInfo)). If the active view’s OnCmdMsg()cannot

deal with the command, the document takes a crack at the command (see CView::

OnCmdMsg()in List 5-27 below). If CFrameWnd::OnCmdMsg()fails to find an active view,

or the view and the document fail to handle the message,the frame window gets a chance to

handle the message. Finally, if the frame window does not want the message, then the

application attempts to process the message― CFrameWnd::OnCmdMsg() calls the

application’s OnCmdMsg()function (pApp >OnCmdMsg(nID,nCode,pExtra,pHandlerInfo)).

Suppose the message has reached the active view in List 5-26, the function CView::

OnCmdMsg()is invoked in VIEWCORE.CPP (List 5-27):

List 5-27.CView::OnCmdMsg() in VIEWCORE.CPP

The framework gives the window pane part of the view a chance to respond to the message

When a window is split (or divided)into several pieces,each piece is called a“pane.”

― ―52

北 星 論 集(経) 第45巻 第２号（通巻第49号)

by calling CWnd::OnCmdMsg(). If the view pane cannot handle the message,the message is,

according to the code in List 5-27,pumped through the document.

Because CWnd does not override OnCmdMsg(), the command goes straight to

CCmdTarget::OnCmdMsg(),which is found in CMDTARG.CPP (List 5-28). In other words,

CWnd::OnCmdMsg() inherits CCmdTarget::OnCmdMsg(). This is a very important point

and indicates the inheritance of the class hierarchy structure.

List 5-28.CCmdTarget::OnCmdMsg() in CMDTARG.CPP

― ―53

Development of a Management Support System on the Windows Platform (III-Part 3):

CCmdTarget::OnCmdMsg()walks the message map trying to find a handler for the

message. If necessary CCmdTarget::OnCmdMsg()gets back to the base class. If it finds

one,it calls that function. If it cannot,CCmdTarget::OnCmdMsg()returns FALSE,and the

document gets a chance to handle the message. If the document does not want anything to

do with the message,then the message is handled by the CWnd’s DefWindProc()(see List 5-22

CWnd::WindowProc()).

5.5.3 Entry for Message in Message Map

CCmdTarget::OnCmdMsg() searches the message in the message map by calling

AfxFindMessageEntry()that is shown in List 5-29. If the function finds the entry for the

message it returns lpEntry.

List 5-29 .AfxFindMessageEntry() in WINCORE.CPP

― ―54

北 星 論 集(経) 第45巻 第２号（通巻第49号)

― ―55

Development of a Management Support System on the Windows Platform (III-Part 3):

If CCmdTarget::OnCmdMsg()evaluates lpEnty as“not NULL”(i.e.finds a handler in the

message map),then it calls AfxDispatchCmdMsg()which is shown also in CMDTARG.CPP

(List 5-30):

List 5-30. AfxDispatchCmdMsg() in CMDTARG.CPP

― ―56

北 星 論 集(経) 第45巻 第２号（通巻第49号)

5.5.4 AfxDispatchCmdMsg()Calling Message Handler

Since the function AfxDispatchCmdMsg()is declared static (i.e.AFX STATIC), it is

visible only within CMDTARG.CPP. One of the parameters is the function signature. This

signature comes from the message map entry itself. We have already seen the structure of

the entries into the message map table AFX MSGMAP ENTRY in 3.2 in (III-1)which is

cited here again for convenience. We notice that a pointer which points to the routine

handling the message is also found within the message map entry(i.e.AFX PMSG pfn).

List 5-31.struct AFX MSGMAP ENTRY in AFXWIN.H

It should be noted in List 5-30 that AfxDispatchCmdMsg() switches on the function

signature, performing different operations depending on whether the signature is for a

― ―57

Development of a Management Support System on the Windows Platform (III-Part 3):

regular command,an extended command,or a command user-interface handler. In the case

of a regular menu command,the signature is AfxSig vv (void return,void parameter list).

AfxDispatchCmdMsg() immediately calls the message handler, and the handler for that

message is called.

If CCmdTarget::OnCmdMsg()fails to find a handler within the message map,it returns

FALSE, which eventually causes CWnd::DefWindProc() to handle the messasge (see List

5-22).

Here we take one example. One of the most important messages of all is the

WM COMMAND message sent when we select an item from the menu. The low word of

the message’s wParam parameter holds the item’s command ID. We can confirm it at the

beginning of List 5-25. An ON COMMAND macro in the message map links WM

COMMAND messages referencing a particular menu item to the class member function,or

command handler of our choice(see List 3-5 in (III-1)). When OnWndMsg gets a message,

it searches our window object’s message map for an entry with a command ID that matches

the received message. We take one more example from our own MSS application. When

we start the application the pop-up menu appears immediately. The pop-up menu itself is a

dialog box that contains［OK］and［Cancel］buttons in it. Suppose we select the first menu

item“Describe”and click on the［OK］button. The event “clicking on［OK］button”does

originate a WM COMMAND message since the［OK］button control sends a notification to

its parent i.e. its dialog box. We can trace the following function calling chain that the

present WM COMMAND triggers. We follow the function calling chain, starting with

AfxWndProc(HWND hWnd,UINT nMsg,WPARAM wParam,LPARAM lParam)［List 5-6

(III-2)］→ LRESULT AFXAPI AfxCallWndProc (CWnd pWnd,HWND hWnd,UINT nMsg,

WPARAM wParam ＝ 0, LPARAM lParam ＝ 0)［List 5-20］ → LRESULT CWnd::

WindowProc(UINT message,WPARAM wParam, LPARAM lParam)［List 5-22］→ BOOL

CWnd::OnWndMsg (UINT message, WPARAM wParam, LPARAM lParam, LRESULT

pResult)［List 5-23］→ BOOL CWnd::OnCommand (WPARAM wParam,LPARAM lParam)

［List 5-25］→ BOOL CDialog::OnCmdMsg (UINT nID, int nCode, void pExtra, AFX

CMDHANDLERINFO pHandlerInfo)［List 5-32 below］→ AFX STATIC BOOL AFXAPI

AfxDispatchCmdMsg (CCmdTarget pTarget,UINT nID,int nCode,AFX PMSG pfn,void

pExtra, UINT nSig, AFX CMDHANDLERINFO pHandlerInfo)［List 5-30］. And in

AfxDispatchCmdMsg()the control enters the switch construction and ends up in the case

“AfxSig vv”. The signature“AfxSig vv”designates the type of the member function, in

this case “void void”, i.e. a parameterless member function with no return. It is

understandable that the present command target class is CDialog.

― ―58

北 星 論 集(経) 第45巻 第２号（通巻第49号)

Here(pTarget >mmf.pfn COMMAND)()means that the object that is the current command

target points the entry in the message map with the present message and that our handler is

(pTarget >mmf.pfn COMMAND)().

List 5-32.CDialog::OnCmdMsg() in DLGCORE.CPP

― ―59

Development of a Management Support System on the Windows Platform (III-Part 3):

5.5.5 Standard Sequence of CCmdTarget-Derived Classes

We owe the description of the standard sequence of CCmdTarget-derived classes very

much to Referece 9). As we have seen in detail above,MFC uses this command-routing

scheme for all the CCmdTarget-derived classes. That includes classes derived from CWnd,

CDocumnt,CView,and CFrameWnd. One interesting aspect of this arrangement is the path

that commands take to get to their final destinations. All command messages take the same

path for the first three steps. That is,the message first lands in AfxWndProc(),which gets

the CWnd object from the HWND parameter and calls AfxCallWndProc(). And

AfxCallWndProc() calls the CWnd-derived object’s Windowproc(). From there, the

message is routed to its inteded destination.

Here is a rundown of the path a command message takes to the various components of

an MFC application.

Command to a Frame Window

Here is the path a WM COMMAND message takes to an application’s frame window.

As with all Windows messages through an MFC program,the first stop is AfxWndProc().

This calls AfxCallWndProc(),finally ending up in the specific Window’s window procedure.

From there the command message is routed to the appropriate command target.

→ → →

→ → →

→ →

→

Command to a Document

Here is the path that a WM COMMAND message takes to an application’s document:

→ → →

→ → →

→ → →

→ →

― ―60

北 星 論 集(経) 第45巻 第２号（通巻第49号)

Here shown is CDocument::OnCmdMsg()in List 5-33.

List 5-33.CDocument::OnCmdMsg() in DOCCORE.CPP

Command to a View

Here is the path that a WM COMMAND message takes to an application’s view:

→ → →

→ → →

→ →

→ →

Command to an App

Here is the path that a WM COMMAND message takes to an application’s

CWinApp-derived object:

→ → →

→ → →

→ →

→ →

Command to a Dialog Box

Dialog boxes also receive command messages. Here is the path a WM COMMAND

message takes to a dialog box:

→ → →

→ → →

→ → →

― ―61

Development of a Management Support System on the Windows Platform (III-Part 3):

This is how command messages come through the framework. The message goes

caroming like billiard balls between several different classes. Handling regular window

messages (like WM SIZE)is quite a bit simpler which is elaborated in (III-4).

― ―62

北 星 論 集(経) 第45巻 第２号（通巻第49号)

BIBLIOGRAPHY

⑴ Noto,Hirosi. Development of a Management Support System On the Windows Platform (I):

Class structure of MFC and creation of user-defined classes,Hokusei Review,The School of

Economics (Hokusei Gakuen University)Vol.42,No.2,March 2003.

⑵ Noto,Hirosi.Development of a Management Support System On the Windows Platform (II):

Registering Window Classes and Creating the Main Window,Hokusei Review,The School of

Economics (Hokusei Gakuen University)Vol.43,No.2,March 2004.

⑶ Noto,Hirosi.Development of a Management Support System On the Windows Platform(III-Part

1): Message Pumping and Message Handling, Hokusei Review, The School of Economics

(Hokusei Gakuen University)Vol.44,No.2,March 2005.

⑷ Noto,Hirosi.Development of a Management Support System On the Windows Platform(III-Part

2): Message Pumping and Message Handling, Hokusei Review, The School of Economics

(Hokusei Gakuen University)Vol.45,No.1,September 2005.

⑸ Brent E.Rector and Joseph M.Newcomer.Win32 Programming,Addison Wesley,1997.

⑹ Charles Petzold.Programming Windows 5th Edition,Microsoft Press,1999.

⑺ http://msdn.microsoft.com/library/default.asp?URL＝/library/devprods/vs6/visualc/vctutor/

tutorhm.htm

⑻ http://msdn.microsoft.com/library/default.asp?url＝/library/en-us/vclib/html/mfc class

library reference introduction.asp

⑼ George Shepherd and Scot Wingo.MFC Internals,Addison Wesley Developers Press,1997.

Jeff Prosise.Programming Windows with MFC 2nd Edition,Microsoft Press,1999.

Aran R.Feuer.MFC Programming,Addison Wesley,1997.

David J.Kruglinski,George Shepherd,and Scot Wingo.Programming Visual C＋＋ (fifth edition),

Microsoft Press,1998.

Stephen D.Gilbert and Bill McCarty.Visual C＋＋ 6 Programming Blue Book,CORIOLIS,1999.

Hayasi,Haruhiko.A New Introduction to Visual C＋＋Ver.5.0(Beginners edition)(in Japanese),

SoftBank Books,1998.

Yosida,Kouitirou.Kiwameru Visual C＋＋,Gijutu (in Japanese)Hyouron-sya,1998.

Yamasita, Hirosi, Kuroba, Hiroaki, and Kuroiwa, Kentarou. C＋＋ Programming Style (in

Japanese),Ohmsha,1994.

http://msdn.microsoft.com/library/default.asp?url＝/library/en-us/vclib/html/ mfc msg

structure.asp

Paul DiLascia,Microsoft System Nournal (1999)

http://www.microsoft.com/msj/0699/c/c0699.aspx

― ―63

Development of a Management Support System on the Windows Platform (III-Part 3):

［Abstract］

Development of a Management Support System

on the Windows Platform (III-Part 3):

Message Pumping and Message Handling

Hiroshi NOTO

This paper studies the mechanism of message pumping and message handling on the

Windows platform. The architecture of processing messages forms the core of the Windows

Programming Model that realizes the event-driven programming technique on it. Windows

calls the function associated with a window when an event occurs that might affect the

window,passing messages in the argument of the call that describe the event. The message

pump is a program loop that retrieves input messages from the application queue,translates

them,and dispatches them to the relevant window procedures (i.e.functions). In the C＋＋

processor with MFC (Microsoft Foundation Class)class library, the message routing and

handling system called “message mapping”is implemented. MFC’s message mapping

technology neatly associates window messages and commands to the member functions of

classes in windows. MFC provides message macros to generate message maps, which

expand into code that defines and implements a message map for a CCmdTarget-based class.

MFC’s standard message-mapping is a reasonable alternative to handling messages via

virtual class member functions,which have been carried out on the original Windows. The

MFC’s standard message-mapping eliminates the overhead of erroneous vtables (virtual

function tables),it is compiler independent,and it is fairly efficient. It is possible to have a

good grasp of how MFC handles the application aspect(initialization and message pump)and

the window aspect (message handling)of a Windows application program by taking a close

look at the internals of MFC and by keeping track of the function calling series triggered by

PumpMessage()of our own MSS (Management Support System)application as an example

of message pumping and message handling.

Key words:Command-Routing and Message-Dispatching Architecture,C＋＋ with MFC (Microsoft

Foundation Class)Library on Windows,WM COMMAND in Commands and Control

Notifications,Message Map Entry with Message,Standard Sequence of CCmdTarget-

Derived Classes

― ―64

北 星 論 集(経) 第45巻 第２号（通巻第49号)

