00O00(@) 0440 020 (DO0470) March 2005

Development of a Management Support System
on the Windows Platform (II-Part 1):

Message Pumping and Message Handling

Hiroshi NOTO

Contents

. Introduction

. Windows Programming Model

. Message Map Data Structure and Message Map Macros

. Windows Message Components and Message Type in Windows
. How MFC Uses Message Maps and Handles Messages

. Hooking into the Message Loop:PreTranslateMessage()

=N O U1 e W NN

. Conclusion

Section 1. Introduction

In our article series of 'Development of a Management Support System (MSS) on the Windows
Platform' we are studying Windows programming on the Windows operating systerg'sﬁy Visual C++ language
processszifl){;i;{th MFC librarg}l.n)As an example of Windows programs we have taken an application we have
recently developed which is called "Management Support System(MSS)". The first article subtitled 'Class
structure of MFC and creation of user-defined classes' and the second article subtitled 'Registering Window
Classes and Creating the Main Window'. The former article elaborated the class structure of our MSS by
reviewing the hierarchical class structure of MFC after describing the design and the performance of our
MSS. The latter one concentrated on the initialization processes of the Windows program and elucidated how
and where the registration of window classes and the creation of the main window is carried out.

The purpose of the present article is to study the message pumping and the message handling procedures
which are the core mechanisms both of the Windows operating system and of the C++ processor with the
MEC library. A Windows application, therefore, written in C++ with MFC upon the Windows platform
contains at least two distinct parts: a message pump and a message handling window procedure. MFC
supports this basic Windows program structure by segregating Windows applications into two main pieces:
a class representing the application and a class representing a window: (1) an application-specific part that

handles initialization, creating one or more windows and sustaining a GetMessage() ... DispatchMessage()

Key words : Windows message handling procedure, Message loop and message pumping (routing) ,
Windows Programming Model, Message mapping macros, MFC (Microsoft Foundation Class)

class library

0O 0 0O 0O@@) 0440 020 (©QOO470)

loop. (2) a window-specific part that takes care of drawing on the window, message handling, and so on. In
MEFC, these two main components are embodied within the CWinApp and the CWnd classes, respectively. In
order to understand the Windows programming well from internals of MFC, we could not avoid figuring out
the mechanism for the message pumping and the message handling.

In 8 2 the Windows programming model is viewed. We examine how the message handling is carried
out in § 3. Message Map Data Structure and Message Map Macros are explained in more detail. In § 4 we
represent Windows message components and message type in Windows. In 8 5 we work out how MFC
actually uses Message Maps and handles messages. We very briefly summarize the hooking mechanism into

the Message Loop in § 6. The summary of the present article is stated § 7.

Section 2. The Windows Programming Model

When (a) window(s) is (are) registered and created, the window(s) has (have) its (their) behavioral
characteristics which are what the Windows Programming Model represents). The Windows Programming
Model provides the "object-oriented" approach where we create abstract data types. These abstract data types
are commonly called "objects" and consist of a data structure and associated functions, commonly called"
methods" that manipulate the data structure. In this model the basic object is a window and the methods are
functions that handle certain notifications or announcements we can send it (the window) of various events
occurred within the window. The core of the Windows Programming Model is to realize the event-driven
programming mechanism in it. An event here could be a keystroke or a mouse click in a window, or a
command for a window, e.g. to repaint the window, or a notification from user-interface objects: menus or
toolbar buttons or the like. The information about the events is called a "message".

In the previous paragraph we stated in its meaning, "A message is sent to the window." Actually,
Windows notifies a window when an event occurs that might affect the window. More precisely Windows
calls the function associated with the window, passing the messages in the arguments of the call that describe
the event that has occurred. However, a message is not sent directly without some "buffer" (as it were) from
Windows to the window procedure that is assigned to the window where an event has occurred (see next

subsection).

2.1. Windows Queues and the Message Loop

Many messages in Windows originate from devices. For example, depressing and releasing a key on the
keyboard generates interrupts that are handled by the keyboard device driver. Moving the mouse and clicking
the mouse buttons generate another interrupts that are handled by the mouse device driver. These device
drivers call Windows to "translate" the hardware event into a message. The resulting message is then once
placed into the Windows "system queue". There is only one system queue in Windows. Messages reside in
the system queue only briefly. There is another queue that each running Windows application can have
uniquely, called "thread queue". In Win32 (i.e. 32-bit Windows operating system), each running application
can have multiple threads of execution, and each thread that is processing messages has its own unique thread
queue. Windows transfers the messages in the system queue to the appropriate thread queue. Each thread

queue, therefore, of a program holds all messages for all windows running in a particular thread.

oz20

Development of a MSS (Management Support System) on the Windows Platform

Windows uses the "input focus" to decide which thread queue should receive the message. The input
focus is an attribute possessed by only one window in the system at a time. The window with the input focus
is the focal point for all keyboard input. Keyboard messages are moved from the system queue into the thread
queue for the thread with a window that presently has the input focus. Mouse messages usually are sent to
the window that is underneath the mouse pointer. When multiple windows are overlapped, the one on the top
within the display receives the mouse message. The one exception to this rule involves "capturing" the mouse.
When a Windows application captures the mouse (which is done by making a Windows function call),
Windows moves all subsequent mouse messages from the system queue to the capturing window's thread
queue, no matter where the mouse is pointing on the screen. The application must eventually release the
captured mouse to allow other applications to use it.

When a program's thread queues are filling with messages, how does the program get the message from
a thread queue and deliver it to the proper window function? We write a small piece of code called the
"message loop". The message loop retrieves input messages from the application queue and dispatches them
to the appropriate window functions. The message loop continually retrieves and dispatches messages until
it retrieves a special message that signals that the loop should terminate (WM_QUIT message actually). One
message loop is, as it were, the 'main body' of a Windows application: A Windows application initializes,
repeatedly executes the message loop logic until instructed to stop, and then terminates.

A program calls the Windows GetMesssage() function to retrieve a message from its thread queue.
Windows moves the message from the queue into a data area within the program. Now the program has the
message. Then the message needs to be sent to the proper window function. To do this, the program calls the
Windows DispatchMessage() function. Why must we call Windows to send a message to a window function
within our program? A program may create more than one window; each window may have its own unique
window function, or multiple windows may use the same window function. In addition, many of the window
functions for window types provided by Windows are not in our program at all; they are inside Windows. The
DispatchMessage() function in Windows hides all this complexity by determining which of the program's
window functions or Window's built-in window functions gets the message. It (DispatchMessage() function)

then calls the proper window function directly. Figure 2-1 shows the path that keyboard input takes all the

Windows Application
CWinThread::Run(
Device Driver
do {if ('PumpMessage()
¢ eturn ExitInstance(;
if (IsIdleNlessage(...))
System Queue f {bldle =[TRUE;
1IdleCourft = 0; }
¢ }while(::PegkMessage(...));
Thread Queue v
CWinThread::PumpM 0
Message loop if (1::GetMessage(...)
A /; Teturn FALSE;}
T if(m_msgCur.message!=
GetMessage() | <
WM_KICKIDLE &&
PreTranslateMessage!(...))
{:TranslateMessage(...);
DispatchMessage() _ :DispatchM (..}
>
return TRUE;

Figure 2-1. Keyboard input to a single Windows application

os3no

0O 0 0O 0O@@) 0440 020 (©QOO470)

way from an event-generation of a keystroke through the system queue, an application's thread queue(s), and

. . o D)
to the relevant window function within the system.

2.2. Event-driven Programming Model

We illustrate the event-driven programming model in Figure 2-2, where applications respond to events
by processing messages sent by Windows operating system. The entry point for a Windows program is a
function named WinMain()*), but most of the action takes place in the window procedure. The window
procedure or the method (sometimes thus called) processes messages sent to the window. WinMain()
creates that window and then enters a message loop, alternately retrieving messages (GetMesssage()
function) and dispatching them to the window procedure (DispatchMessage() function). Messages wait in
a message queue (mostly in a thread queue) until they are retrieved. A typical Windows application performs
the bulk of its processing in response to the messages it receives, and in between messages, it does little

except wait for the next message to arrive.

Incoming messages

| WM_PAINT II
| WM_KEYDOWN H— —| WM_SIZE II
| WM_COMMAND I!,— —‘| WM_LBUTTONDOWN
YYYYY

—Message queue

—Retrieved messages

Application
WinMain ¥
— Message
loop
\Ff‘,/g'c‘i,%"f,m J,— Dispatched messages
Message handler		Message handler
Message handler		Message handler
Message handler		Message handler

v Unprocessed messages

| DefWindowProc ||

Fiigure 2-2. The Windows prgramming mdel
Source: Aran R. Feuer. "MFC Programming, Addison Wesley, 1997.

* WinMain() was studied in detail in article (O)

040

Development of a MSS (Management Support System) on the Windows Platform

The message loop ends when a WM_QUIT message is retrieved from the message queue, signaling that
it is time for the application to end. This message usually appears because the user selected Exit from the File
menu, clicked the close button (the small button with an [x] in the window's upper right corner), or selected
Close from the window's system menu. When the message loop ends, WinMain() returns and the application
terminates.

Here we very briefly refer to the message types and the message form. Further details of the message

types and forms are viewed later in § 4.

The type of a message

Windows defines hundreds of different message types. Most messages have names that begin with the
letters "WM" and an underscore, as in WM_CREATE and WM_PAINT. These messages can be classified in
various ways, but for the moment classification is not nearly as important as realizing the critical role
messages play in the operation of an application. The following table shows 10 of the most common
messages. Some of them are already seen so far. A window receives a WM_PAINT message, for example,
when its interior needs repainting. One way to characterize a Windows program is to think of it as a collection
of message handlers. To a large extent, it is a program's unique way of responding to messages that gives the

program its personality. In Table 2-1 we present most common Windows messages.

Table 2-1. Most common Windows messages

Message Sent When
WM_CHAR A character is input from the keyboard.
WM_COMMAND The user selects an item from a menu, or a control sends a notification
to its parent.
WM_CREATE A window 1s created.
WM_DESTROY A window 1s destroyed.
WM_LBUTTONDOWN The left mouse button is pressed.
WM_LBUTTONUP The left mouse button is released.
WM_MOUSEMOVE The mouse pointer is moved.
WM_PAINT A window needs repainting.
WM_QUIT The application is about to terminate.
WM_SIZE A window 1s resized.

The form of a message

A message manifests itself in the form of a call to a Windows' window procedure. Bundled with the call
are four input parameters: the handle of the window to which the message is directed, a message ID, and two
32-bit parameters known as wParam and 1Param. The window handle is a 32-bit value that uniquely identifies
a window. Internally, the value refers to a data structure in which Windows stores relevant information about
the window such as its size, style, and location on the screen. The message ID is a numeric value that
identifies the message type: WM CREATE, WM PAINT, and so on. wParam and IParam contain
information specific to the message type. When a WM_LBUTTONDOWN message arrives, for example,
wParam holds a series of bit flags identifying the state of the Ctrl and Shift keys and of the mouse buttons.

[Param holds two 16-bit values identifying the location of the mouse pointer when the click occurred.

os0o

0O 0 0O 0O@@) 0440 020 (©QOO470)

Together, these parameters provide the window procedure with all the information it needs to process the
WM _LBUTTONDOWN message.

2.3. Message Loop in the MSS Application

Here we try to trace where and how the message pumping mechanism works by invoking our own MSS
which boosts and deals with the message loop, responding to events generated in window objects. The
Windows application sets going AfxWinMain() function which is automatically called when we invoke the
MSS. As soon as we start to use Multiple Document Templates of the MSS, MFC pops up a new dialog box.
The application proceeds after we select one of the pop-up menu commands, for example, "describe" in the
dialog box where the five Document Templates are featured. This selection continues processing
AfxWinMain() function in WINMAIN.CPP and therein we reach pThread->Run() as seen in List 2-1.

List 2-1. AfxWinMain() in WINMAIN.CPP

int AFXAPI AfxWinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR IpCmdLine, int n"CmdShow)
{

ASSERT (hPrevInstance == NULL);

int nReturnCode = -1;
CWinThread* pThread = AfxGetThread();
CWinApp* pApp = AfxGetAppQ;

// AFX internal initialization
if (VAfxWinInit(hInstance, hPrevinstance, lpCmdLine, nCmdShow))
goto InitFailure;

// App global initializations (rare)
if (pApp !'= NULL && !pApp->InitApplication())
goto InitFailure;

// Perform specific initializations
if (!pThread->InitInstance())
{
if (pThread->m_pMainWnd != NULL)
{
TRACEOQ("Warning: Destroying non-NULL m pMainWnd¥n");
pThread->m_pMainWnd->DestroyWindow () ;
}
nReturnCode = pThread->ExitInstance();
goto InitFailure;

}
nReturnCode = pThread->Run();

InitFailure:
#ifdef DEBUG
// Check for missing AfxLockTempMap calls
if (AfxGetModuleThreadState()->m_nTempMapLock != 0)

{
TRACE1("Warning: Temp map lock count non-zero (%ld).¥n",
AfxGetModuleThreadState()->m_nTempMapLock);
}
AfxLockTempMaps();
AfxUnlockTempMaps(-1);
#endif
AfxWinTermQ);
return nReturnCode;
}

Development of a MSS (Management Support System) on the Windows Platform

Then pThread->Run() in AfxWinMain() is overridden by CWinApp::Run() in APPCORE.CPP. And
CWinApp::Run() at the end of the function returns CWinThread::Run() in THRDCORE.CPP as shown in
List 2-2.

List 2-2. CWinApp::Run() in APPCORE.CPP

// Main running routine until application exits

int CWinApp::Run()

{
if (m_pMainWnd == NULL && AfxOleGetUserCtrl())
{

// Not launched /Embedding or /Automation, but has no main window!
TRACEO("Warning: m_pMainWnd 1s NULL in CWinApp::Run - quitting
application.¥n");
AfxPostQuitMessage(0);
}

return CWinThread::Run();

In CWinThread::Run(), as you can see in List 2-3, contained is a "do-while" message loop developed
with MFC with an evaluation of a ::PeckMessage() Win32 API. As long as the ::PeeckMessage() function
returns a nonzero value, the loop calls PumpMessage() (i.e. CWinThread::PumpMessage) to perform

normal message translation and dispatching until a WM_QUIT message is received.

List 2-3. CWinThread::Run() in THRDCORE.CPP

// main running routine until thread exits
int CWinThread::Run()

(
ASSERT VALID(this);

// for tracklng the 1dle time state
BOOL bldle =
LONG HdleCount = O

1{/ a(cq;lire and dispatch messages until a WM_QUIT message is received.
or

// phasel: check to see if we can do idle work
while (bldle &&
{ I::PeekMessage (&m_msgCur, NULL, NULL, NULL, PM_NOREMOVE))

// call Onldle while in bldle state
if (!OnIdle(1IdleCount++))
\ bldle = FALSE; // assume "no idle" state

// phase2: pump messages while available
do
{
// pump message, but quit on WM_QUIT
if ('PumpMessage())
return ExitInstance();

// reset "no idle" state after pumping "normal" message
if (IsIdleMessage(&m_msgCur))

bldle = TRUE;
1IdleCount = 0;

0O 0 0O 0O@@) 0440 020 (©QOO470)

} while (::PeekMessage(&m msgCur, NULL, NULL, NULL,
PMfNOR’}EMOVE));

ASSERT(FALSE); // not reachable

Although PumpMessage is undocumented, we can examine its source code in the THRDCORE.CPP file
in List 2-4.

List 2-4. CWinThread::PumpMessage() in THRDCORE.CPP

// CWinThread implementation helpers
BOOL CWinThread::PumpMessage()

{
ASSERT_VALID(this);

if (1::GetMessage(&m_msgCur, NULL, NULL, NULL))

{
#ifdef _DEBUG
if (afxTraceFlags & traceAppMsg)
TRACEQ("CWinThread::PumpMessage - Received WM_QUIT.¥n");
m_nDisablePumpCount++; // application must die
// Note: prevents calling message loop things in 'ExitInstance’
// will never be decremented
#endif
return FALSE;
}

#ifdef _DEBUG
if (m_nDisablePumpCount != 0)
{
TRACEO("Error: CWinThread::PumpMessage called when not permitted.¥n");
ASSERT(FALSE);

#endif

#ifdef _DEBUG
if (afxTraceFlags & traceAppMsg)
~AfxTraceMsg(_T("PumpMessage"), &m_msgCur);
#endif

// process this message

if (m _msgCur.message '= WM _KICKIDLE && !PreTranslateMessage(&m msgCur))
{

:TranslateMessage(&m msgCur);

::DispatchMessage(&m_msgCur);

}
return TRUE;

More specifically, the command PumpMessage() calls CWinThread::PumpMessage() in THRDCORE.CPP
as shown in the List. In this function a set of the message pumping procedures(::GetMessage(),

:TranslateMessage(), and ::DispatchMessage()) are contained in the message loop.

os8no

Development of a MSS (Management Support System) on the Windows Platform

Section 3. Message Map Data Structure and Message Map Macros

So far, we have seen the event-driven Windows programming mechanism in which an event occurred
within a window is notified to the window as a message. The message this time is dispatched to the
appropriate message handler or method which is a function to process the message responding to the event
of the window. Every window class within a Windows application requires a message-handling procedure.
Whenever Windows detects an event that is pertinent to a specific window, it generates a message and calls
the window's message handler with information about the event.

In this section we consider how we can use C++ classes to handle Windows messages and look closely
into the message-handling architecture specifically in MFC,

In Windows a message routing and handling system called "message map" is implemented. At the
highest level, message maps simply associate window messages and commands to a class's member functions.
MFC's message mapping technology is made up of two parts: (1) the CCmdTarget class and (2) message
maps. The CCmdTarget class is the base class for any object that needs to receive window messages,
commands, or both. In spite of the name "message map", message maps handle both messages and
commands; all three categories of messages are elaborated in the next section as Message Categories.
Message map data structure and message map macros are two other important aspects of the message-

mapping system.

3.1 CCmdTarget
To be able to receive messages in an object, the class it belongs to must be derived from CCmdTarget.
CCmdTarget-derived classes have the machinery necessary to deal with message maps. Any class derived

from CCmdTarget can use a message map.

3.2 Message Map Data Structure
Let us take a peek at two data structures used to implement MFC's message mapping. The first is

AFX MSGMAP_ENTRY. This structure represents the actual entries into the message map table.

struct AFX_MSGMAP_ENTRY

{
UINT nMessage; // windows message
UINT nCode; // control code or WM_NOTIFY code
UINT nlID; // control ID (or 0 for windows messages)
UINT nLastID; // used for entries specifying a range of control id's
UINT nSig; // signature type (action) or pointer to message #
AFX PMSG pfn; // routine to call (or special value)

IS

Here the UINT type is a typedef for an unsigned int. A UINT variable is a 32-bit unsigned integer in Win32
application. The first field(nMessage) indicates the Windows message coming through the system. The
second field(nCode) represents the control code or the WM_NOTIFY code. The third field(nID) refers to

oo9n

0O 0 0O 0O@@) 0440 020 (©QOO470)

the control ID generating the message. Parameter number four (nLastID) is used for entries specifying a
range of control identifiers. The nSig parameter indicates the signature of the function to handle the message.
The last parameter(pfn) points to the routine handling the message.

The second structure is AFX MSGMAP. The AFX MSGMAP structure represents the actual message

map:

struct AFX_MSGMAP
{
#ifdef _AFXDLL
const AFX_MSGMAP* (PASCAL* pfnGetBaseMap) (;

#else

const AFX_MSGMAP* pBaseMap;
#endif

const AFX_MSGMAP_ENTRY* IpEntries;
I8

This structure has two parts: (1) a pointer to another AFX_MSGMAP structure(in practice, the base class's
message map) and (2) an array of AFX MSGMAP_ENTRY structures. It should be noticed how this
structure is set up to be included in a linked list. A message map is basically an array of
AFX MSGMAP_ENTRY structure. Each class hierarchy used within an application maintains a linked list
of message maps. This is how MFC implements inheritance using message maps. Basically, the framework

walks the message maps back to the root class until it finds a function to handle the message.

Dynamic Processing of WM_COMMAND Messages

The message-map mechanism provided by the Microsoft Foundation Classes (MFC) can process
WM _COMMAND messages for a constant ID. However, in some cases, an application needs to process
WM_COMMAND messages for an ID that is not known until run time. This can occur when an application
modifies menus or dynamically creates controls at run time. To process these messages, our application must

override the CCmdTarget::OnCmdMsg() function.

3.3 Message Map Macros

MFC provides three macros to generate message maps: DECLARE MESSAGE MAP,
BEGIN MESSAGE MAP, and END MESSAGE MAP. These macros expand into code that defines and
implements a message map for a CCmdTarget-based class. When using message maps in our classes, the
basic strategy is to includle DECLARE MESSAGE MAP in our class definition, i.e. in our H file and then
add BEGIN MESSAGE MAP, END MESSAGE MAP, and message-mapping information to our
implementation file (CPP file). DECLARE_MESSAGE MAP is declared in AFXWIN.H and looks like this
(in List 3-1):

oo

Development of a MSS (Management Support System) on the Windows Platform

List 3-1. DECLARE_MESSAGE_MAP in AFXWIN.H

#ifdef _AFXDLL
#define DECLARE_MESSAGE_MAPO
private:
static const AFX_MSGMAP _ENTRY _messageEntries[];
protected:
static AFX _DATA const AFX MSGMAP messageMap:;
static const AFX MSGMAP* PASCAL GetBaseMessageMapQ);
virtual const AFX _MSGMAP* GetMessageMap() const:

#else
#define DECLARE_MESSAGE_MAPO
private:
static const AFX_MSGMAP _ENTRY _messageEntries[];
protected:
static AFX DATA const AFX MSGMAP messageMap:;
virtual const AFX_MSGMAP* GetMessageMap() const:

#endif

Here a symbol " AFXDLL" is one of the DLL-related preprocessor symbols which means that the DLL
contains MFC code and links to the shared MFC runtime. Using DECLARE MESSAGE MAP in a class
declaration defines three things for the class: (1) an array of AFX MSGMAP_ENTRY structure called
_messageEntries[], (2) an AFX_MSGMAP structure called messageMap, and (3) a function to retrieve the
class's message map (GetMessageMap()). Note that the message map entries (_messageEntries[]) and the
message map structure (messageMap) are static members of the class. This means that there is one
_ messageEntries array and one messageMap member for all objects within the class.

Here is a CWinApp-derived class CMSSApp in MSS.H which is the framework class of our MSS’
CMSSApp includes a message map where the macro DECLARE MESSAGE MAP is inserted. The

preprocessor uses the message macros to generate message-mapping support code.

List 3-2. Macro DECLARE_MESSAGE_MAP in CMSSApp in MSS.H

// MSS.h : main header file for the MSS application

//

#if !defined (AFX_MSS_H_ 39C8F225_ATEB_11D3_9C1E_00000E49332F__INCLUDED_)
#define AFX_MSS_H_ 39C8F225_ATEB_11D3_9C1E_00000E49332F __INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

oo

0O 0 0O 0O@@) 0440 020 (©QOO470)

#ifndef AFXWIN_H_
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

L1177
// CMSSApp:

// See MSS.cpp for implementation of this class.

//

class CMSSApp : public CWinApp

{

public:
CMSSAppO;

// CString m_ve_d;

// Overrides
// ClassWizard generated virtual function overrides
//H{AFX_VIRTUAL(CMSSApp)
public:
virtual BOOL Initlnstance();
//BAFX_VIRTUAL

// Implementation

//{AFX_MSG(CMSSApp)
afx_msg void OnAppAbout();
afx_msg void OnCommonToVar();
afx_msg void OnVarToModel O;
afx_msg void OnComScenarioToDatafile();
afx_msg void OnRunExecute():
afx_msg void OnGoalseekExecute();
afx_msg void OnTeirituHou();
afx_msg void OnCfin1Read Q)
//HAFX_MSG
DECLARE_MESSAGE_MAPQ

b

1177777707 777177777777777777

//{{AFX_INSERT LOCATION}}

// Microsoft Developer Studio will insert additional declarations immediately before the previous

line.

#endif // !defined (AFX_MSS H_ 39C8F225_ATEB_11D3 9C1E_00000E49332F _INCLUDED)

There are two more macros that finish the job: BEGIN. MESSAGE MAP and END MESSAGE MAP.

As the name implies, the macro begins a message map. The macro definition, as found in AFXWIN.H, looks

like this:

List 3-3. BEGIN_MESSAGE_MAP() and END_MESSAGE_MAP() in AFXWIN.H

#ifdef _AFXDLL
#define BEGIN MESSAGE MAP (theClass, baseClass)
const AFX_MSGMAP* PASCAL theClass:: GetBaseMessageMap ()
{ return &baseClass::messageMap; }
const AFX_MSGMAP* theClass::GetMessageMap() const

0120

Development of a MSS (Management Support System) on the Windows Platform

{ return &theClass::messageMap; }
AFX_COMDAT AFX_DATADEF const AFX_MSGMAP theClass::messageMap =
{ &theClass:: GetBaseMessageMap, &theClass:: messageEntries[0] };
AFX_COMDAT const AFX_MSGMAP_ENTRY theClass::_messageEntries[] =
{

#else
#define BEGIN MESSAGE MAP (theClass, baseClass)
const AFX_MSGMAP* theClass::GetMessageMap() const
{ return &theClass::messageMap; }
AFX_COMDAT AFX_DATADEF const AFX_MSGMAP theClass::messageMap =
{ &baseClass::messageMap, &theClass:: messageEntries[0] };
AFX_COMDAT const AFX_MSGMAP_ENTRY theClass::_messageEntries[] =
{

#endif

When used together in an implemented file (.CPP file), these macros actually implement the message
map. Here is again an example of the implementation of a CWinApp-derived class CMSSApp in MSS.CPP
where inserted are macros BEGIN. MESSAGE MAP and END MESSAGE MAP. In MSS.CPP each macro

. S 2)
is expanded into its defined code.

List 3-4. Macros BEGIN_MESSAGE_MAP and END_MESSAGE_MAP in CMSSApp class in MSS.CPP

// MSS.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "MSS.h"
#include "MainFrm.h"
#include "ChildFrm.h"
#include "MSSDoc.h"
#include "MSS1Doc.h"
#include "MSS2Doc.h"
#include "MSSView.h"
#include "MSS1View.h"
#include "MSS2View.h"
#include "MSS3View.h"
#include "MSS4View.h"
#include "MSS4Doc.h"

#include "VarDialog.h"
#include "SelectDlg.h"
#include "SetGoalDlg.h"
#include "FixedRateDlg.h"
#include "WzdSplash.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _FILE_ ;
#endif

1111017777777 77 777777777 77
// CMSSApp

BEGIN_MESSAGE_MAP(CMSSApp, CWinApp)
//H{AFX_MSG_MAP(CMSSApp)

// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated code!
ON_COMMANDID_APP_ABOUT, OnAppAbout)
ON_COMMAND((IDM_COMMON_TO_VAR, OnCommonToVar)
ON_COMMAND(IDM_VAR_TO_MODEL, OnVarToModel)
ON_COMMAND(IDM_COM_SCENARIO_TO_DATAFILE, OnComScenarioToDatafile)

010

0O 0 0O 0O@@) 0440 020 (©QOO470)

ON_COMMAND(IDM_RUN_EXECUTE, OnRunExecute)
ON_COMMAND(IDM_GOALSEEK_EXECUTE, OnGoalseekExecute)
ON_COMMANDIDM_TEIRITU_HOU, OnTeirituHou)
ON_COMMAND(IDM_Cfinl_Read, OnCfinlRead)
//NAFX_MSG_MAP
// Standard file based document commands
ON_COMMAND(ID_FILE NEW, CWinApp::OnFileNew)
ON_COMMAND(D_FILE_OPEN, CWinApp::OnFileOpen)
// Standard print setup command
ON_COMMANDD_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAPQ

[11777777777777717777777777777777777777777777777/777777777777777/77777777777777
// CMSSApp construction
CMSSApp::CMSSApp()
{
// TODO: add construction code here,
// Place all significant initialization in InitInstance

LI17177770777

// The one and only CMSSApp object

CMSSApp static theApp;

[117777777777777177
// CMSSApp initialization

First, the macros generate a GetMessageMap() function for the class. This function simply returns a
reference to the class's message map. GetMessageMap() is used by the framework to retrieve the class's
message map whenever it needs to. The macro then generates code that fills the class's AFX MSGMAP
structure. The first field points to the base class's message map (in this case the CWinApp's message map),
creating a linked list all the way back to the root object. This allows the framework to check each of the base
classes for a message handler whenever a specific message cannot be found. The linked list shows how MFC
implements inheritance in message maps. The second field is set to point to the first message map entry for
the class itself.

Finally, the macro generates the actual message table. Remember, the message map is simply a table of
AFX MSGMAP_ENTRY structures. Notice the additional macros enclosed within the message map.
Sandwiched between the BEGIN_MESSAGE MAP and END MESSAGE MAP macros are a set of these
message entry macros. There are a number of these listed with MFC documentation. They all begin with
"ON_..." These macros map Windows messages to their specific message handlers. The macros expand to
fill the _messageEntries array for the class's message map. MFC defines various message map entry macros,

which are listed in Table 3-1.

0140

Development of a MSS (Management Support System) on the Windows Platform

Table 3-1. MFC's message map entry macros

Message Type

Macro Form

Arguments

Predefined Windows Messages

ON_WM_XXXX

None

Commands

ON_COMMAND

Command ID, Handler name

Update commands

ON_UPDATE_COMMAND_U1

Command ID, Handler name

Control notifications

ON_XXXX

Control ID, Handler name

User—defined message

ON_MESSAGE

User—defined
Handler name

message 1D,

Registered Windows message

ON_REGISTERED_MESSAGE

Registered message 1D variable,
Handler name

Range of command IDs

ON_COMMAND_RANGE

Start and end of a contiguous
range of command IDs

Range of command 1IDs

updating

for

ON_UPDATE_COMMAND_U1_RANGE

Start and end of a contiguous
range of command IDs

Range of control IDs

ON_CONTROL_RANGE

A control-notification code and
the start and end of a contiguous
range of command IDs

In the specific example just given in List 3-4, the message map uses the command type macro,
"ON_COMMAND" which is found in AFXMSG_.H(List 3-5). In List 3-5 we also show a predefined
Windows message macro, "ON_WM LBUTTONDBLCLK" which responds to an event of "left mouse

button double clicks".

List 3-5. ON_COMMAND macro and ON_WM_LBUTTONDBLCLK defined in AFXMSG_.H.

CN_COMMAND,
(WORD)id,
(WORD)id,
AfxSig vv,

0,
0,
0,
AfxSig vwp,

#define ON_COMMAND(id, memberFxn)
{ WM_COMMAND,

(AFX_PMSG) &memberFxn },

#define ON_WM_LBUTTONDBLCLK O
{ WM_LBUTTONDBLCLK,

(AFX_PMSG) (AFX_PMSGW)
(void (AFX_MSG_CALL CWnd::*) (UINT, CPoint))&OnLButtonDbIClk },

Now go back and take a quick look at the AFX MSGMAP_ENTRY structure. Let us notice how the

macro neatly fills the structure. The signature value at the fifth column is used by the framework to signify

the return type and the parameters of the message handling function. We examine the signature more in detail

in 8 5.

0150

0O 0 0O 0O@@) 0440 020 (©QOO470)

Section 4. Windows Message Components and Message Type in Windows

In this section we are going to view the components of the Windows message in general and after that
to group Windows messages into three categorieéﬁ.) There are three main categories: (1) Windows messages,
(2) Control Notification Messages, and (3) Command Messages. Messages in the first two categories -
Windows messages and control notifications - are handled by windows: objects of classes derived from class
CWnd. This includes CFrameWnd, CMDIFrameWnd, CMDIChildWnd, CView, CDialog, and our own
classes derived from these base classes. Such objects encapsulate an HWND, a handle to a Windows window.

Those three message categories are summarized below.

4.1 Components of Windows Messages

Windows is an event-driven operating environment: Windows on the computer is watching the hardware
for events. Whenever something interesting happens, Windows detects the event and passes that information
to the applications it is hosting. The information about the events is called a message. All window messages
have the same basic form. A window message has three components: (1)an unsigned integer containing the
actual message,(2) WPARAM a word-size parameter(WPARAM is 32 bits in Win32), and (3)LPARAM a
four-byte parameter. The form of a message is already briefly introduced in § 2.

Windows has no knowledge about specific cases for each message. This means that each message must
exhibit polymorphic behavior. In C++, "polymorphism" signifies the concept of a single interface for multiple
functions. A window message has a single interface that has many different behaviors corresponding to each
event in the window.

Of the three components of a window message, the unsigned integer always refers to the actual message.
However, the WPARAM and the LPARAM can mean a variety of different things. In fact, the LPARAM
component of a window message often contains additional data or points to a data structure required to handle
the message. Take a typical message like WM _COMMAND. WM _COMMAND is sent to a window
whenever (1) a menu item is selected. (2) a control sends a notification code to its parent window, or (3)
an accelerated keystroke is translated. The low word (the low-order 16 bits) of the WPARAM parameter
represents a number identifying the control. The high word (the high-order 16 bits) of the WPARAM is the
notification code, indicating things like whether the user double-clicking on the control. The LPARAM
represents the window handle of the control sending the message. It can get rather difficult trying to keep
track of the messages and what the parameters mean.

We summarize the message data structure (MSG) form in Figure 4-1 with short remarks assigned to

.. . LB
cach member. Additional members, "time" and "pt" are also explained.

Figure 4-1. the message data structure (MSG) form

The MSG structure has the following form:

typedef struct tagMSG { // msg
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM IParam:;

01e0

Development of a MSS (Management Support System) on the Windows Platform

DWORD time;
POINT pt;
} MSG;

The MSG structure contains message information from a thread's message queue.
Members

hwnd: Identifies the window whose window procedure receives the message.
message: Specifies the message number.

wParam: Specifies additional information about the message. The exact meaning depends on the
value of the message member.

1Param: Specifies additional information about the message. The exact meaning depends on the
value of the message member.

time: Specifies the time at which the message was posted.

pt: Specifies the cursor position, in screen coordinates, when the message was posted.

4.2 Three Message Categories

(1)Windows messages

This includes primarily those messages beginning with the WM __ prefix, except for WM_COMMAND.
Windows messages are handled by windows and views (i.e. rendering or representing data). These messages
often have parameters that are used in determining how to handle the message. A 16-bit value identifying the
message. Constants corresponding to all message values are provided through WINUSER.H and begin with
the WM_ (which stands for "window message") prefix. For example, a mouse-button event message might

be identified by the constant WM_LBUTTON_DOWN (left button pressed), which is the value "0 x 0201".

(2)Control notifications

This includes WM_COMMAND notification messages from controls and other child windows to their
parent windows. For example, an edit control sends its parent a WM_COMMAND message containing the
EN_CHANGE control-notification code when the user has taken an action that may have altered text in the
edit control. The window's handler for the message responds to the notification message in some appropriate
way, such as updating the text or retrieving the text in the control. The Windows Common Controls make use
of the more powerful WM_NOTIFY for complex control notifications. This version of MFC has direct
support for this new message with the ON_NOTIFY and ON_NOTIFY_RANGE macros. The framework
routes control-notification messages like other WM _ messages. One exception, however, is the
BN_CLICKED control-notification message sent by buttons when the user clicks them. This message is

treated specially as a command message and routed like other commands

(3)Command messages
This includes WM_COMMAND notification messages from user-interface objects: menus, toolbar
buttons, and accelerator keys. The framework processes commands differently from other messages, and they

can be handled by more kinds of objects. Command messages can be handled by a wider variety of objects:

o17o

0O 0 0O 0O@@) 0440 020 (©QOO470)

documents, document templates, and the application object itself in addition to windows and views. When a
command directly affects some particular object, it makes sense to have that object handle the command. For
example, the Open command on the File menu is logically associated with the application: the application
opens a specified document upon receiving the command(ID_FILE_OPEN). So the handler for the Open
command is a member function of the application class(OnFileOpen()). Menu items, toolbar buttons, and
accelerator keys are "user-interface objects" capable of generating commands. Each such user-interface object
has an ID. We associate a user-interface object with a command by assigning the same ID to the object as the
command. As explained in Messages, commands are implemented as special messages. Figure 4-2
"Commands in the Framework" below shows how the framework manages commands. When a user-interface
object generates a command, such as ID_FILE_OPEN, one of the objects in our application handles the
command(] in the figure below, the application object's OnFileOpen() function is called via the application's

message map.

File Open menu item selected User interface object selected

A4

ID_FILE_OPEN Command

A4

Command-target message map

Application Object ON_COMMAND
v
OnFileOpen(Handler
v
Open the file selected Takes action

Figure 4-2. Commands in the Framework

0180

Development of a MSS (Management Support System) on the Windows Platform

[BIBLIOGRAPHY]

D

2)

3)

4)
5)
6)
D)

8)
9)
10)
11)

12)
13)

14)
15)

16)

Noto, Hirosi. Interface Reflecting a Hybrid of the Decision Support System and the Expert System,
Hokusei Review, The School of Economics(Hokusei Gakuen University) Vol. 37, 2000.

Noto, Hirosi. Development of a Management Support System On the Windows Platform(I): Class
structure of MFC and creation of user-defined classes, Hokusei Review, The School of
Economics(Hokusei Gakuen University) Vol. 42, No.2, March 2003.

Noto, Hiroshi. Development of a Management Support System On the Windows Platform(II):
Registering Window Classes and Creating the Main Window, Hokusei Review, The School of
Economics (Hokusei Gakuen University) Vol. 43, No.2, March 2004.

Brent E. Rector and Joseph M. Newcomer. Win32 Programming, Addison Wesley, 1997.

Charles Petzold. Programming Windows 5th Edition, Microsoft Press, 1999.
http://msdn.microsoft.com/library/default.asp? URL=/library/devprods/vs6/visualc/vctutor/tutorhm.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc class_library
_reference_introduction.asp

George Shepherd and Scot Wingo. MFC Internals, Addison Wesley Developers Press, 1997.

Jeff Prosise. Programming Windows with MFC 2nd Edition, Microsoft Press, 1999.

Aran R. Feuer. MFC Programming, Addison Wesley, 1997.

David J. Kruglinski, George Shepherd, and Scot Wingo. Programming Visual C++(fifth edition),
Microsoft Press, 1998.

Stephen D. Gilbert and Bill McCarty. Visual C++ 6 Programming Blue Book, CORIOLIS, 1999.
Hayasi, Haruhiko. A New Introduction to Visual C++ Ver. 5.0(Beginners edition) (in Japanese),
SoftBank Books, 1998.

Yosida, Kouitirou. Kiwameru Visual C++, Gijutu(in Japanese) Hyouron-sya, 1998.

Yamasita, Hirosi, Kuroba, Hiroaki, and Kuroiwa, Kentarou. C++ Programming Style(in Japanese),
Ohmsha, 1994.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/ mfc_msg_structure.asp

010

b B B HRE ek H25 (EBHE4TS)

[Abstract]

Development of a Management Support System
on the Windows Platform (II- Part 1):

Message Pumping and Message Handling

Hiroshi NOTO

We have studied the mechanism of message pumping and message handling on the Windows platform.
The architecture of processing messages forms the core of the Windows Programming Model that realizes
the event-driven programming technique on it. Windows calls the function associated with a window when
an event occurs that might affect the window, passing messages in the argument of the call that describe
the event. The message pump is a program loop that retrieves input messages from the application queue,
translates them, and dispatches them to the relevant window procedures (i.e. functions). In the C++
processor with MFC (Microsoft Foundation Class) class library, the message routing and handling system
called "message mapping" is implemented. MFC's message mapping technology neatly associates window
messages and commands to the member functions of classes in windows. MFC provides message macros
to generate message maps, which expand into code that defines and implements a message map for a
CCmdTarget-based class. MFC's standard message-mapping is a reasonable alternative to handling
messages via virtual class member functions, which have been carried out on the original Windows. It
(MFC's standard message-mapping) eliminates the overhead of erroneous vtables (virtual function
tables), it is compiler independent and it is fairly efficient. We should have a good grasp of how MFC
handles the application aspect (initialization and message pump) and the window aspect (message
handling) of a Windows application program by taking a close look at internals of MFC and by keeping
track of function calling series triggered by PumpMessage() of our own MSS(Management Support

System) application as an example of message pumping and message handling.

Key words : Windows message handling procedure, Message loop and message pumping (routing) ,
Windows Programming Model, Message mapping macros, MFC (Microsoft Foundation Class)

class library

0200

E & X

LERE BEEN FUEE2E BEFTH)

HA4TE

ﬁ]\%

1E

187 26 149TH

an

(an)

48 T»6H31TH

Fiigure 2-2. The Windows
prgramming model

Figure 2-2. Windows
Programming Model

48 THbH21TH

Programming,

Programming",

48 T26 117H

(1)

(Im).

8H T»bH21TH

In this function

Through this function

118 FTH»654TH

_ messageEntries

_messageEntries

128 456 31TH

begins a message map.

beging and ends a
message map.

138 25615478
1B

#define END_MESSAGE_MAP|
{0,0,0,0,AfxSig_end,(AFX_PMSG)0}

b

48 T256 21TH

the_messageEntries

the _messageEntries

15H T4 5H20fTH

ON_WM_LBUTTONDBLCLK
defined

ON_WM_LBUTTONDBLCLK
macro defined

178 E»551TH

A 16-bit value

UINT message is a
16-bit value

178 E»6 84TH

/

“0 x 0201

“0x0201”

178 T»5L51TE

commands

commands.

