oooo@) 0430 O 20 (WOO4s50) March 2004

Development of a Management Support System on the Windows Platform(II):
Registering Window Classes and Creating the Main Window

Hiroshi NOTO

Contents

. Introduction

. Two Classes Relevant to Initialization
. Initialization

. Registering Window Classes

. Creating the Main Window

S O B W DN

. Summary

1. Introduction

The purpose of this article is to examine the inside of the Windows application i.e. the mechanism of the
Windows program when it is started on the Windows operating system. We adopt here the Microsoft's Visual
C++” on Windows as a language processor. Visual C++ incorporates the MFC library” into its own
processing program. MFC is the C++ class library which provides an object-oriented wrapper around the
Windows API(Application Programming Interface)”. Whereas the introduction of MFC simplifies a full-
featured and robust application development and enables us to fully exploit Windows architecture, the
mechanism of the Windows program has become hidden deep in the MFC library. In order to understand the
Windows programming, therefore, it is instructive and effective to look into how Windows programs work
and where in the programming codes Windows characteristic processes are executed .

As an example of the Windows application we take the Management Support System (MSS)
program””'? which we have recently developed in Seminar I and Seminar II for Juniors and Seniors,
respectively I am in charge of in the Hokusei Gakuen University. The MSS program itself, however, is not
the very first code that Windows executes when we start the application MSS. The Windows application
generally requires a set of standard initializations to be done before the program really runs. Typically, these
processes involve registering one or more window classes and creating one or more windows. Therefore in
this article we concentrate on the initialization processes of the Windows programming and how and where

they are realized in our MSS program.

Key words : Object-oriented programming, Windows programming, MFC class library, Initialization,

Window classes registration

0630

0O 0O 0O 0O(@) 0430 020 (0O0O450)

In Chapter 2 we first briefly recapitulate two classes in MFC library which are relevant to initialization
procedures. In Chapter 3 we view the initialization of the Windows programming in general. We elucidate the
process of registering window classes in Chapter 4. In Chapter 5 we clarify how and where the Windows

program creates the main window. The summary of the present article is stated in Chapter 6.

2. Two Classes Relevant to Initialization

5),7)-14)
In this chapter we recap two classes CWinApp and AFX MODULE_STATE in MFC just briefly within

the scope of the initialization of a Windows application and the registration of window classes. Although
AFX MODULE STATE is not given a name beginning with "C", which usually implies a class, it sure
possesses the entity of a class in MFC. The two classes are well referred to in the following chapters and play

important roles in initialization and registration.

2.1. CWinApp class in MFC

Windows applications contain the following two distinct parts:(1)an application-specific part that
handles initialization, creating one or more windows, and sustaining a message pump(GetMessage() ...
DispatchMessage() loop); (2)a window-specific part that takes care of drawing on the window, message
handling, and so on. In MFC the former function (1) is embodied within the CWinApp as a class
representing the application, and the latter function (2) is embodied within the CWnd as a class representing
a window.

CWinApp comprise a vast number of member functions and variables which are defined in AFXWIN.H.

The class definition of CWinApp is shown in List 2-1.

List 2-1. CWinApp in AFXWIN.H

class CWinApp : public CWinThread

DECLARE DYNAMIC(CWinApp)
public:

// Constructor
CWinApp(LPCTSTR IpszAppName = NULL); // app name defaults to EXE
name

// Attributes

// Startup args (do not change)
HINSTANCE m_hInstance;
HINSTANCE m_hPrevInstance;
LPTSTR m lpCmdLine;
int m_nCmdShow;

// Running args (can be changed in InitInstance)
LPCTSTR m_pszAppName: // human readable name
// (from constructor or AFX_IDS APP_TITLE)

&LPCTSTR m_pszRegistryKey; // used for registry entries
CDocManager® m_pDocManager;

// Support for Shift+F1 help mode.

0640

Development of a Management Support System on the Windows Platform (O)

BOOL m_bHelpMode; // are we in Shift+F1 mode?

public: // set in constructor to override default
LPCTSTR m_pszExeName; // executable name (no spaces)
LPCTSTR m_pszHelpFilePath; // default based on module path
LPCTSTR m_pszProfileName; // default based on app name

// Initialization Operations - should be done in InitInstance

// Helper Operations - usually done in InitInstance
public:
// wrappers for Cursors
// wrappers for Icons
// Profile settings (to the app specific .INI file, or registry)

// Running Operations - to be done on a running application
// Dealing with document templates
vold AddDocTemplate(CDocTemplate® pTemplate);
POSITION GetFirstDocTemplatePosition() const;
CDocTemplate® GetNextDocTemplate(POSITION& pos) const;

// Dealing with files

virtual CDocument® OpenDocumentFile(LPCTSTR lpszFileName); // open named
file

virtual void AddToRecentFileList(LPCTSTR lpszPathName); // add to MRU

// Printer DC Setup routine, 'struct tagPD' is a PRINTDLG structure
// Command line parsing

BOOL RunEmbedded();

BOOL RunAutomated();

void ParseCommandLine(CCommandLinelnfo& rCmdInfo);

BOOL ProcessShellCommand(CCommandLinelnfo& rCmdInfo);

// Overridables
// hooks for your initialization code

virtual BOOL InitApplication();

// Functions for exiting
// Advanced: to override message boxes and other hooks
// Advanced: Help support

// Command Handlers

protected:
// map to the following for file new/open
afx_msg void OnFileNew();
afx_msg void OnFileOpen();

// map to the following to enable print setup
afx_msg void OnFilePrintSetup();

0650

0O 0O 0O 0O(@) 0430 020 (0O0O450)

// map to the following to enable help

// Implementation

protected:
HGLOBAL m_hDevMode; // printer Dev Mode
HGLOBAL m_hDevNames; // printer Device Names
DWORD m_dwPromptContext; // help context override for message box
int m_nWaitCursorCount; // for wait cursor (>0 => waiting)

public:

HCURSOR m_hcurWaitCursorRestore; // old cursor to restore after wait cursor
CRecentFileList™ m_pRecentFileList;

void UpdatePrinterSelection(BOOL bForceDefaults);
vold SaveStdProfileSettings(); // save options to .INI file

public: // public for implementation access
CCommandLineInfo* m_pCmdInfo;

ATOM m_atomApp, m_atomSystemTopic; // for DDE open
UINT m_nNumPreviewPages; // number of default printed pages

size t m_ nSafetyPoolSize; // 1deal size
void (AFXAPI* m_IpfnDaoTerm)();

vold DevModeChange(LPTSTR IpDeviceName);
void SetCurrentHandles();
int GetOpenDocumentCount();

// helpers for standard commdlg dialogs

// overrides for implementation

virtual BOOL InitInstance();

virtual int ExitInstance(); // return app exit code

virtual int Run();

virtual BOOL Onldle(LONG 1Count); // return TRUE if more 1dle processing
virtual LRESULT ProcessWndProcException(CException™® e, const MSG™* pMsg);

virtual "CWinApp();

protected:

//H{AFX_MSG(CWinApp)

afx_msg void OnAppExit();

afx_msg void OnUpdateRecentFileMenu(CCmdUI* pCmdU]I);
afx_msg BOOL OnOpenRecentFile(UINT nlID);
//DAFX_MSG

DECLARE_MESSAGE_MAP()

We summarize here the most important functions of CWinApp:

. CWinApp uses a structure called CCommandLinelnfo. CWinApp maintains a set of the command line

parameters passed into WinMain()(see the next chapter). They are the current instance

0 660

Development of a Management Support System on the Windows Platform (O)

handle(m_hInstance), the previous instance handle(m_hPrevInstance), the command line
parameters(m_IlpCmdLine), and the show window flag(m_nCmdShow).

2. The Windows application needs to have a place where it can perform instance-specific initialization. In an
MFC application this is performed in CWinApp::InitInstance(). MFC calls InitInstance() before
anything substantial happens in an application (usually in the main window).

3. In MFC applications the message pump is supported by CWinApp. Calling CWinApp::Run() starts a
standard message pump(GetMessage()...DispatchMessage() loop). CWinApp's message loop has
explicit support for performing back-ground processing.

4. Finally, most applications need a place to perform shutdown and to clean up code. In an MFC application,

ExitInstance() serves this purpose.

2.2. AFX MODULE_STATE class in MFC

Like most other Windows applications, MFC applications have to keep track of various items, including
main window handles, resources, and module handles. To support these features MFC maintains much more
information than a regular Windows application might. MFC defines a structure called
AFX MODULE STATE in the AFXSTAT .H file(List 2-2). In the class definition in List 2-2,
AFX MODULE STATE is derived from the base class CNoTrackObject. The base class, CNoTrackObject,
is an undocumented base class. Designed for use by the MFC framework, classes derived from the

CNoTrackObject class are exempt from memory leak detection.

List 2-2. AFX_MODULE_STATE in AFXSTAT_.H

// AFX_MODULE_STATE (global data for a module)
class AFX_MODULE_STATE : public CNoTrackObject
{
public:
#ifdef _AFXDLL
AFX MODULE_STATEBOOL bDLL, WNDPROC pfnAfxWndProc, DWORD

dwVersion);
AFX_MODULE_STATEBOOL bDLL, WNDPROC pfnAfxWndProc, DWORD
dwVersion,
BOOL bSystem);
#else
AFX_MODULE_STATE(BOOL bDLL);
#endif

"AFX_MODULE_STATE();

CWinApp* m_pCurrentWinApp;

HINSTANCE m_hCurrentInstanceHandle;

HINSTANCE m_hCurrentResourceHandle;

LPCTSTR m_lpszCurrentAppName;

BYTE m bDLL; // TRUE if module is a DLL, FALSE if it is an EXE
BYTE m_bSystem; // TRUE if module 1s a "system" module, FALSE if not
BYTE m_bReserved[2]; // padding

DWORD m_fRegisteredClasses; // flags for registered window classes

// runtime class data

0670

0O 0O 0O 0O(@) 0430 020 (0O0O450)

#ifdef _AFXDLL
CRuntimeClass™ m_pClasslnit;
#endif
CTypedSimpleList<CRuntimeClass™> m_classList;

// OLE object factories
#ifndef _AFX_NO_OLE_SUPPORT
#ifdef AFXDLL
COleObjectFactory* m_ pFactorylnit;
#endif
CTypedSimpleList<COleObjectFactory*> m_factoryList;
#endif
// number of locked OLE objects
long m_nObjectCount;
BOOL m bUserCtrl;

// AfxRegisterClass and AfxRegisterWndClass data

TCHAR m szUnregisterList[4096];
#ifdef _AFXDLL

WNDPROC m_pfnAfxWndProc;

DWORD m_dwVersion; // version that module linked against
#endif

// variables related to a given process in a module
// (used to be AFX_MODULE_PROCESS_STATE)
#ifdef _AFX_OLD_EXCEPTIONS
// exceptions
AFX_TERM_PROC m_pfnTerminate;
#endif
vold (PASCAL *m_pfnFilterToolTipMessage)(MSG*, CWnd*);

#ifdef _AFXDLL
// CDynLinkLibrary objects (for resource chain)
CTypedSimpleList<CDynLinkLibrary*> m_libraryList;

// special case for MFCxxLOC.DLL (localized MFC resources)
HINSTANCE m_appLangDLL;
#endif

#ifndef _AFX_NO_OCC_SUPPORT
// OLE control container manager
COccManager* m pOccManager;
// locked OLE controls
CTypedSimpleList<COleControlLock™> m_lockList;
#endif

#ifndef _AFX _NO _DAO_SUPPORT
~AFX DAO STATE* m pDaoState;
#endif

#ifndef _AFX_NO_OLE_SUPPORT
// Type library caches
CTypeLibCache m_typeLibCache;
CTypeLibCacheMap* m_ pTypeLibCacheMap:;
#endif

// define thread local portions of module state
THREAD_LOCALAFX_MODULE_THREAD_STATE, m_thread)

0680

Development of a Management Support System on the Windows Platform (O)

AFX MODULE STATE contains core information about the module; that is, information required by
all MFC modules regardless of type(whether EXE or DLL). Collected within this structure are the module
instance handle, the instance of the module from which to pull resources, pointer to the module's CWinApp-
derived class, the name of the application, a pointer to the first node in the application's list of run-time class
information structures and a pointer to an exception handler. Here is a rundown of the most important
AFX MODULE STATE members:

* m_pCurrentWinApp: A pointer to a CWinApp.

* m_hCurrentlnstanceHandle: The instance handle of this module.

* m_hCurrentResourceHandle: The instance handle holding the module's resources.

* m_lIpszCurrentAppName: A pointer to the application's name.

* m_bDLL: Indicates whether the module is a dynamic link library or an executable.

* m_classList: A pointer to the first run-time class in the application's list of CRunTimeClass structures.

* m_szUnregisterList[4096]: Maintains a list of registered window classes so that MFC can unregister
them upon termination.

* m_pfnAfxWndProc: Points to MFC's standard window procedure.

* m_fRegisteredClasses: Indicates which MFC window classes have already been registered.

3. Initialization

As remarked in Chapter 1, the MSS program(MSS.exe) is not the very first code that Windows executes
when we start the application MSS. The linker inserts some start-up code that actually gets control from the
Windows operating system. The start-up code in turn calls the function we view as the entry point of the
application. The start-up code CRTEXE.c on the Visual C++ initializes the application(in our case the MSS
application) using CRT DLL. The C/C++ run-time library(CRT) code performs the DLL startup sequence
which initializes the C/C++ run-time library and invokes C++ constructors on static, non-local objects.
However the CRTEXE.c itself could not explicitly be seen in the MSS program.

There are some initializations that have to be done for every running instance of the application. This
means usually registering one or more window classes, and creating one or more windows, and creating and

showing the main window.

3.1. WinMain ()

In CRTEXE.c defined is WinMainCRTStartup() function which is shown in List 3-1. By default the
Visual C++ linker specifies the function WinMainCRTStartup() as the C run-time library. This is the default
starting address for an Windows application. The WinMain() function here in WinMainCRTStartup() is
called by the Visual C++ as the initial entry point for a Windows-based application.

The roles of WinMain() are the following three points:

1. Performs all necessary initialization which includes loading resources used by the program, registering
window classes, and creating windows.
2. Executes a message loop fetching messages for the application and dispatching to the appropriate message-

handling functions.

0690

0O 0O 0O 0O(@) 0430 020 (0O0O450)

3. Terminates the application when the message loop detects a WM_QUIT message after freeing any

resources possibly reserved by the initialization code.

List 3-1. WinMainCRTStartup() in CRTEXE.c

void WinMainCRTStartup (void)
{
int mainret;
mainret = WinMain (
GetModuleHandle(NULL),
NULL,
lpszCommandLine,
StartupInfo.dwFlags & STARTF_USESHOWWINDOW
? StartupInfo.wShowWindow : SW_SHOWDEFAULT
);

exit(mainret);

The syntax of WinMain() is described like this:
Syntax
int WinMain (
HINSTANCE hinstance,
HINSTANCE hPrevinstance,
LPSTR IpCmdLine,
int nCmdShow
);

The WinMain() requires four parameters. The first parameter sets a handle to the current instance of the
application. The second parameter is a handle to the previous instance of the application. In the present
version of Windows(Win32), this parameter is always NULL. The third parameter is a pointer to a NULL-
terminated string called lpszCommandLine which enables us to enter a command line to run a program. The
forth parameter to the WinMain() is nCmdShow which is an integer to specify how the application should
display its main window. The exit() module defines C run-time termination.

In the actual flow of the program, however, the WinMain() in WinMainCRTStartup() is overriden by
the following tWinMain() function in the APPMODUL.CPP in MFC with the same type of parameters as
WinMain() (List 3-2). This is where most programs perform application-specific and instance-specific

initialization, as well as start up application's message loop."””

o700

Development of a Management Support System on the Windows Platform (O)

List 3-2. tWinMain() in APPMODUL.CPP

extern "C" int WINAPI
_tWinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR IpCmdLine, int nCmdShow)

// call shared/exported WinMain
return AfxWinMain (hInstance, hPrevinstance, IpCmdLine, nCmdShow);
}

Here WINAPI specifies a calling sequence to be used to push some number of parameters on the stack in

®
right-to-left ordering so as to pass them to the function. " t" in front of WinMain() is used for Unicode

support. According to the program tWinMain() delegates processing to a function called AfxWinMain().

The AfxWinMain() is seen in the file WINMAIN.CPP below(List 3-3).

List 3-3. AfxWinMain() in WINMAIN.CPP

int AFXAPI AfxWinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int n"CmdShow)

ASSERT (hPrevInstance == NULL);

int nReturnCode = -1;
CWinThread* pThread = AfxGetThreadO;
CWinApp* pApp = AfxGetAppQO;

// AFX internal initialization
if (JAfxWinInit(hInstance, hPrevinstance, lpCmdLine, nCmdShow))

goto InitFailure;

// App global initializations (rare)
if (pApp != NULL && !pApp->InitApplication())

goto InitFailure;

// Perform specific initializations
if (!pThread->InitInstance())
{
if (pThread->m_pMainWnd != NULL)
{
TRACEO("Warning: Destroying non-NULL m_pMainWnd¥n");
pThread->m_pMainWnd->DestroyWindow ();

o71o

0O 0O 0O 0O(@) 0430 020 (0O0O450)

}
nReturnCode = pThread->ExitInstanceO;
goto InitFailure;

}

nReturnCode = pThread->RunQ;

InitFailure:
#ifdef _DEBUG
// Check for missing AfxLockTempMap calls
if (AfxGetModuleThreadState()->m_nTempMapLock != 0)

{
TRACE1("Warning: Temp map lock count non-zero (%ld).¥n",
AfxGetModuleThreadState)->m_nTempMapLock);
}
AfxLockTempMapsQ);
AfxUnlockTempMaps(-1);
#endif
AfxWinTermO;

return nReturnCode;

The first thing AfxWinMain() does is to declare a global pointer variable of type CwinApp and assign the
value of AfxGetApp() to it. It gets the single application object associated with the program(a CWinApp-
derived object is required by every MFC program). The C++ program constructs CWinApp-derived global
object(MSS.CPP in our case) even before WinMain()is called. As long as CWinApp-derived object is

included in our program, the object will be constructed by the time WinMain() gets around to executing.

3.2. Constructing CWinApp
The constructor of CWinApp itself is found in APPCORE.CPP(List 3-4). The main job of CWinApp's

constructor is
1) to initialize CWinApp's member variables. CWinApp's constuctor takes a single parameter: the name
of the program. CWinApp sets its m_pszAppName variable to the value passed in. This parameter
defaults to NULL.
2) to initialize the module's thread state structure(the AFX THREAD STATE class) and module
state structure(the AFX MODULE STATE class). CWinApp's constructor initializes the
AFX MODULE STATE's m_pCurrentWinApp to the CWinApp being constructed. All of

CWinApp's other members are set to NULL(that is, the instance handle, the pointer to the main

o720

Development of a Management Support System on the Windows Platform (O)

window, the name of the application, and so on).

List 3-4. CWinApp::CWinApp() in APPCORE. CPP

CWinApp::CWinApp(LPCTSTR lpszAppName)

{

if (IpszAppName != NULL)
m_pszAppName = tesdup(IpszAppName);
else

m_pszAppName = NULL;

// initialize CWinThread state

AFX_MODULE_STATE* pModuleState = _AFX_CMDTARGET_GETSTATE();
AFX_MODULE_THREAD_STATE* pThreadState = pModuleState->m_thread;
ASSERT(AfxGetThread() == NULL);

pThreadState->m_pCurrentWinThread = this;

ASSERT(AfxGetThread() == this);

m_hThread = ::GetCurrentThread();

m_nThreadID = ::GetCurrentThreadId();

// initialize CWinApp state

ASSERT(afxCurrentWinApp == NULL); // only one CWinApp object please
pModuleState->m_pCurrentWinApp = this;

ASSERT(AfxGetApp() == this);

// 1n non-running state until WinMain
m_hInstance = NULL;
m_pszHelpFilePath = NULL;
m_pszProfileName = NULL;
m_pszRegistryKey = NULL;
m_pszExeName = NULL;
m_pRecentFileList = NULL;
m_pDocManager = NULL;

m_atomApp = m_atomSystemTopic = NULL;
m_lpCmdLine = NULL;

m_pCmdInfo = NULL;

// 1nitialize wait cursor state
m_nWaitCursorCount = 0;
m_hcurWaitCursorRestore = NULL:

// 1nitialize current printer state

m_hDevMode = NULL;

m_hDevNames = NULL;

m_nNumPreviewPages = 0; // not specified (defaults to 1)

// initialize DAO state
m_lpfnDaoTerm = NULL; // will be set if AfxDaolnit called

// other initialization
m_bHelpMode = FALSE;
m_nSafetyPoolSize = 512; // default size

o730

0O 0O 0O 0O(@) 0430 020 (0O0O450)

3.3. Initializing the Framework: AfxWinlInit()
Next, AfxWinMain() calls AfxWinInit() to initialize the framework. AfxWinlnit() is implemented in
APPINIT.CPP as shown in List 3-5.

List 3-b. AfxWinlnit() in APPINIT.CPP

BOOL AFXAPI AfxWinlnit(HINSTANCE hlnstance, HINSTANCE hPrevInstance,
LPTSTR IpCmdLine, int nCmdShow)

ASSERThPrevinstance == NULL);

// handle critical errors and avoid Windows message boxes
SetErrorMode(SetErrorMode(0) |
SEM_FAILCRITICALERRORSISEM_NOOPENFILEERRORBOX);

// set resource handles
AFX_MODULE_STATE* pModuleState = AfxGetModuleState();
pModuleState->m_hCurrentlnstanceHandle = hlnstance;

pModuleState->m_hCurrentResourceHandle = hlnstance;

// fill in the initial state for the application

CWinApp* pApp = AfxGetApp();

if (pApp != NULL)

{
// Windows specific initialization (not done if no CWinApp)
pApp->m_hInstance = hlnstance;
pApp->m_hPrevinstance = hPrevlnstance;
pApp->m_lpCmdLine = IpCmdLine;
pApp->m_nCmdShow = nCmdShow;
pApp->SetCurrentHandles();

// initialize thread specific data (for main thread)
if ('afxContextIsDLL)
AfxInitThread();

return TRUE;

Whenever a Windows application starts, Windows passes the four parameters to the application: the

0740

Development of a Management Support System on the Windows Platform (O)

current instance handle, the previous instance handle, the command line parameters, and the show command.
AfxWinlnit() takes those four parameters as its arguments. AfxWinlnit() sets CWinApp::m_hlInstance,
CWinApp::m_hPrevinstance, CWinApp::lp CmdLine, and CWinApp::nCmdShow to those passed
parameters.

AfxWinInit() sets the error mode for application using SetErrorMode(). This designates what will
cause the application to fail.

AfxWinInit() then calls AfxGetModuleState() to get the module's AFX MODULE _STATE
structure(See Chapter 2.2). AfxWinlnit() stores the module instance handle and
the resource handle in AFX MODULE STATE::m_hCurrentlnstanceHandle and AFX MODULE STATE::
m_hCurrentResource Handle, respectively. CWinApp keeps these parameters as member variables. At this
point both the current instance handle and the resource handle point to the module's instance
handle(hInstance).

Then AfxWinlnit() calls the application object's SetCurrentHandles() function to initialize the

application name and path variables within CWinApp. SetCurrentHandles() is shown in List 3-6.

List 3-6. CWinApp::SetCurrentHandles() in APPINIT.CPP

void CWinApp::SetCurrentHandles()

{
ASSERT(this == afxCurrentWinApp);
ASSERT(afxCurrentAppName == NULL);

AFX_MODULE_STATE* pModuleState = _AFX_CMDTARGET_GETSTATE();
pModuleState->m_hCurrentInstanceHandle = m_hInstance;
pModuleState->m_hCurrentResourceHandle = m_hInstance;

// get path of executable
TCHAR szBuff[MAX _PATH];
VERIFY (::GetModuleFileName(m_hInstance, szBuff, _MAX_PATH));

LPTSTR lpszExt = _tesrchr(szBuff, ".");
ASSERT(IpszExt != NULL);

ASSERT (*lpszExt == ".");

*lpszExt = 0; // no suffix

TCHAR szExeName[MAX_PATH];

TCHAR szTitle[256];

// get the exe title from the full path name [no extension]

VERIFY (AfxGetFileName(szBuff, szExeName, MAX_PATH) == 0);
if (m_pszExeName == NULL)

{
BOOL bEnable = AfxEnableMemoryTracking(FALSE);
m_pszExeName = _tesdup(szExeName); // save non-localized name
AfxEnableMemoryTracking(bEnable);

}

// m_pszAppName is the name used to present to the user

o750

0O 0O 0O 0O(@) 0430 020 (0O0O450)

if (m_pszAppName == NULL)

{
BOOL bEnable = AfxEnableMemoryTracking(FALSE);
if (AfxLoadString(AFX_IDS_APP_TITLE, szTitle) != 0)
m_pszAppName = _tesdup(szTitle); // human readable title
else
m_pszAppName = _tesdup(m_pszExeName); // same as EXE
AfxEnableMemoryTracking(bEnable);
}

pModuleState->m_lpszCurrentAppName = m_pszAppName;
ASSERT(afxCurrentAppName != NULL);

// get path of .HLP file
if (m_pszHelpFilePath == NULL)

{
Istrepy(pszExt, _T(".HLP");
BOOL bEnable = AfxEnableMemoryTracking(FALSE);
m_pszHelpFilePath = _tcsdup(szBuff);
AfxEnableMemoryTracking(bEnable);
“IpszExt = "¥0"; // back to no suffix

}

if (m_pszProfileName == NULL)

{
Istrcat(szExeName, _T(".INI"); // will be enough room in buffer
BOOL bEnable = AfxEnableMemoryTracking(FALSE);
m_pszProfileName = _tcsdup(szExeName);
AfxEnableMemoryTracking(bEnable);

}

First SetCurrentHandles() sets AFX MODULE_STATE handles again. Then SetCurrentHandles() uses
GetModuleFileName() to retrieve the module file name. SetCurrentHandles() then initializes the
m_pszExeName to the executable file(in the present case "MSS"). SetCurrentHandles() then initializes the
m_pszAppName to the title of the application("MSS"). SetCurrentHandles() also sets the application's
AFX MODULE STATE* pModuleState->m_IpszCurrentAppName to the same values as m_pszAppName.
SetCurrentHandles() also fills CWinApp's help file and profile strings: m_pszHelpFilePath and
m_pszProfileName. SetCurrentHandles()initializes m_pszHelpFilePath to "S:\O O 2\WCPP\FIXEDRATEA
CTIVEX2\Debug\MSS.HLP" and m_pszProfileName to "MSS.INI".

Up to here the application and the framework are both initialized properly. Now that the handles and file

names are all initialized correctly, MFC continues with the rest of the application.

3.4. InitApplication() and InitInstance()

Next AfxWinMain() calls the application's InitApplication()and InitInstance(). InitApplication() is

0760

Development of a Management Support System on the Windows Platform (O)

implemented in APPCORE.CPP(See List 3-7). The InitInstance() in CWinApp is implemented again in
APPCORE.CPP(See List 3-8). In this section our MSS.CPP(the application framework object of CMSSApp

application class) shows up explicitly in the process of initialization and registration.

List 3-7. CWinApp::InitApplication() in APPCORE.CPP

BOOL CWinApp::InitApplication()
{
if (CDocManager::pStaticDocManager != NULL)
{
if (m_pDocManager == NULL)
m_pDocManager = CDocManager::pStaticDocManager;
CDocManager::pStaticDocManager = NULL;
}
if (m_pDocManager != NULL)
m_pDocManager->AddDocTemplate(NULL);
else
CDocManager::bStaticInit = FALSE;
return TRUE;
}
List 3-8. CWinApp::Initinstance() in APPCORE.CPP
BOOL CWinApp::InitInstance()
{
return TRUE;
}

In Win32 system InitApplication() actually does nothing with initialization. CWinApp's version of
InitApplication() initializes the application's document manager. All initialization should take place in
InitInstance().

Now we are at InitInstance() in AfxWinMain(). AfxWinMain() calls pThread->InitInstance().
pThread->InitInstance() is overridden by CWinApp::InitInstance(), because CWinApp is derived from
CWinThread. Whenever a program begins, it is necessary to perform initializations for a certain instance of
the program. CWnd::InitInstance() serves that purpose. CWinApp's default implementation of InitInstance()
does nothing as seen in List 3-8. It just returns TRUE. However, CWinApp::InitInstance() is also virtual, so
we can safely override it by our CMSSApp::InitInstance(). As a result it is pThread->InitInstance() here that
is overridden by the CMSSApp::InitInstance() which will be shown in List 4-1 in the next chapter. This time
CMSSApp::Initlnstance() in turn initializes the present application instance.

Activities that take place inside InitInstance() include such tasks as setting all the documents for an
application and showing the main window. Because the default version of InitInstane() does nothing, it is up
to us to make sure that such a window appears on the screen. In Chapter 4 we can see that

CMSSApp::InitInstance() registers the present application instance and displays the main window.

o77o

0O 0O 0O 0O(@) 0430 020 (0O0O450)

3.5. Priming the Message Pump: CWinApp::Run()

The last thing WinMain() does before leaving is to call the CWinApp-derived object's Run() function.
Run() starts the ball rolling with the message loop. The Run() function does a little more than just a generic
GetMessage()...DispatchMessage() loop. The mechanism of message loop and message handling is to be
reviewed and discussed in the forthcoming article. Because CWinApp is derived from CWinThread, at this
point CWinApp-derived class "pThread" simply defers to the CWinThread's Run() function to start the

message pump.

nReturnCode = pThread->Run();

4. Registering Window Classes

Initialization procedures now proceed to the execution of function pThread->InitInstance() in
AfxWinMain() (List 3-3. WINMAIN.CPP). The variable pThead(which is actually a thread of execution
within MFC) is an instance of CWinThread. Since CWinApp is derived from CWinThread,
CWinApp::InitInstance() overrides pThread->InitInstance(). This is where our application framework
MSS.cpp shows up in the initialization. The application class CMSSApp is derived from CWinApp and the
member function CMSSApp::InitInstance() in turn overrides CWinApp::InitInstance() and is implemened
in MSS.CPP as shown in List 4-1.

List 4-1. CMSSApp::Initinstance) in MSS.CPP

L1117
// The one and only CMSSApp object

CMSSApp static theApp;

L1177 7777777777777777777777777

//CMSSApp intialization

BOOL CMSSApp::InitInstance()

{
CWzdSplash wndSplash;
wndSplash.Create(IDB_WZDSPLASH);//#H"MSSSystem.bmp"® & &

wndSplash.UpdateWindow (); //send WM_PAINT
AfxEnableControlContainer();

#ifdef AFXDLL

Enable3dControlsO; // Call this when using MFC in a shared DLL
#else

Enable3dControlsStaticQ; // Call this when linking to MFC statically,
#endif

o780

Development of a Management Support System on the Windows Platform (O)

SetRegistryKey (_T("Local AppWizard-Generated Applications"));
LoadStdProfileSettings(); // Load standard INI file options (including MRU)

// Register the application's document templates. Document templates

// serve as the connection between documents, frame windows and views.

CMultiDocTemplate* pDocTemplate;

pDocTemplate = new CMultiDocTemplate(
IDR_MSSTYPE,
RUNTIME_CLASS(CMSSDoc),
RUNTIME_CLASS(CChildFrame), // main SDI frame window
RUNTIME_CLASS(CMSSView));

AddDocTemplate (pDocTemplate);

// create main MDI Frame window

CMainFrame* pMainFrame = new CMainFrame;

if (!pMainFrame->LoadFrame(IDR_ MAINFRAME))
return FALSE;

m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo ecmdInfo;

ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line
if (!ProcessShellCommand (cmdInfo))
return FALSE;

// The main window has been initialized, so show and update it.
pMainFrame->ShowWindow (m_nCmdShow);

pMainFrame->UpdateWindow ();

return TRUE;

o790

0O 0O 0O 0O(@) 0430 020 (0O0O450)

As pointed out in Chapter 3. Initialization, the Windows application generally requires a set of standard
initializations to be done before the program really runs. Typically these involve registering one or more
window classes and creating one or more windows”".

The first operation an InitInstance() function does is to register the window classes. A window class
defines certain attributes common to all windows that are created based on that class. The structure type

WNDCLASS defines ten attributes of a window:

typedef struct tagWNDCLASS

{
UINT style;
WNDPROC IpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hinstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR IpszMenuName;
LPCSTR lpszClassName;
} WNDCLASS;

Those are all class attributes of a window. The first field is the window class style, for example,
CS DBLCLKS | CS HREDRAW | CS_VREDRAW, which causes Windows to detect a double-click for an
application and to send double-click messages to all windows of this class, or which causes a window to be
completely redrawn whenever the width of the client area (CS_HREDRAW) or the height of the client area
(CS_VREDRAW) changes. These symbolic constants are combined with the C bitwise OR operator ("|"). The
second field of the WNDCLASS structure contains the address of the function that processes all messages for
all windows that are created based on this window class. The third field specifies the memory to be allocated
to contain information about a registered class. The fourth field specifies how many extra bytes should be
allocated for each window structure created for this class. The fifth field of the WNDCLASS is hlnstance. A
window class is owned by the module instance assigned to this field. Most applications set this field to the
instance handle that was passed to the application as a parameter of WinMain(). The sixth field is for
specifying the icons for a window class, hlcon, the handle of the large icons. The seventh field is hCursor for
a cursor. The eighth field is a handle to a brush. Windows uses the brush(a small colored bit map pattern of
pixels) indicated in this field to paint the background of the client area of all windows created based on this
class. The ninth field is a LPCTSTR pointer to the name of a menu resource used for all windows created
based on the class. The tenth field is also a LPCTSTR pointer to the first character of the class name loaded
by the LordString() function.

CMSSApp::Initlnstance() calls the function pMainFrame->LoadFrame() in MSS.CPP(List 4-1).
pMainFrame->LoadFrame() then calls(‘inherits’ in this case) CMDIFrameWnd::LoadFrame() in

o son

Development of a Management Support System on the Windows Platform (O)

WINMDI.CPP(List 4-2). CMDIFrameWnd::LoadFrame() then calls(‘inherits’) CFrameWnd::LoadFrame()
in WINFRM.CPP(List 4-3). Here in WINFRM.CPP, we finally reach AfxDeferRegisterClass() that
registers window classes used in MFC.

Before a Windows application can display a window, the application has to register at least one window
class. An MFC application is just like any other Windows applications, so it needs to register at least one
window class as well. As was described above a window class defines very basic aspects of a window, such
as its appearance (via some flags) and its behavior (via a callback function). MFC actually registers four
standard window classes: (1) regular child windows, (2)a control bar window, (3)an MDI frame window,

and (4)a window for an SDI or MDI child window.

List 4-2. CMDIFrameWnd::LoadFrame () in WINMDI.CPP

BOOL CMDIFrameWnd::LoadFrame (UINT nIDResource, DWORD dwDefaultStyle,
CWnd* pParentWnd, CCreateContext* pContext)
{
if (!CFrameWnd::LoadFrame(nIDResource, dwDefaultStyle,
pParentWnd, pContext))
return FALSE;

// save menu to use when no active MDI child window 1s present
ASSERT(m_hWnd != NULL);
m_hMenuDefault = ::GetMenu(m_hWnd);
if (m_hMenuDefault == NULL)

TRACEO("Warning: CMDIFrameWnd without a default menu.¥n");
return TRUE;

List 4-3. CFrameWnd::LoadFrame() in WINFRM.CPP

BOOL CFrameWnd::LoadFrame (UINT nIDResource, DWORD dwDefaultStyle,
CWnd* pParentWnd, CCreateContext* pContext)
{
// only do this once
ASSERT VALID_IDR(nIDResource);
ASSERT(m_nIDHelp == 0 [l m_nIDHelp == nIDResource);

m nIDHelp = nIDResource; // ID for help context (+HID BASE RESOURCE)

CString strFullString;
if (strFullString.LoadString (nIDResource))
AfxExtractSubString (m_strTitle, strFullString, 0); // first sub-string

VERIFY (AfxDeferRegisterClass(AFX_WNDFRAMEORVIEW_REG));

// attempt to create the window

LPCTSTR lpszClass = GetlconWndClass(dwDefaultStyle, nIDResource);

LPCTSTR IpszTitle = m_strTitle;

if (!Create(lpszClass, 1pszTitle, dwDefaultStyle, rectDefault,
pParentWnd, MAKEINTRESOURCE (nIDResource), 0L, pContext))

{

return FALSE: // will self destruct on failure normally

0 s81no

0O 0O 0O 0O(@) 0430 020 (0O0O450)

}

// save the default menu handle
ASSERT(m_hWnd != NULL);
m_hMenuDefault = ::GetMenu(m_hWnd);

// load accelerator resource
LoadAccel Table(MAKEINTRESOURCE (nIDResource));

if (pContext == NULL) // send initial update
SendMessageToDescendants (WM_INITIALUPDATE, 0, 0, TRUE, TRUE);

return TRUE;

The following examples show the four decoration window class names supplied for "nonstatic" and

"debug" builds of an application, each corresponding to the above mentioned window class respectively:'®

AfxWnd42d: all child windows with no icon, arrow cursor and no background color.

AfxControlBar42d: the standard control bar implementation with no icon, arrow cursor and gray background
color.

AfxMDIFrame42d: the MDI frame window (that is, the parent) with icon, arrow cursor and no background
color.

AfxFrameOrView42d: frame windows and views with icon, arrow cursor and background color.

The names for window classes are decorated with the MFC version number("42" which means "MFC4.2").
In addition, MFC uses information about whether or not the application is statically linked and information
about whether the application is a debug("d") or release("r") build of MFC in order to decorate the class
names.

MFC provides a helper function or a macro routine for registering a window class. Given a set of
attributes (window class style, cursor, background brush, and icon), a synthetic name is generated, and the
resulting window class is registered. According to the AFXIMPL.H header file, MFC defines a macro
AfxDeferRegisterClass(fClass) as a helper function AfxEndDeferRegisterClass(fClass).

#define AfxDeferRegisterClass(fClass) AfxEndDeferRegisterClass(fClass)

Therefore a call AfxDeferRegisterClass(AFX WNDFRAMEORVIEW_REG).for example, in CFrameWnd::
LoadFrame() in List 4-3 invokes AfxEndDeferRegisterClass(AFX_WNDFRAMEORVIEW_REG) with a
parameter AFX WNDFRAMEORVIEW REG. The following values including this parameter represent
MFC's four standard window classes in binary representation(by bitmap) which correspond to the above

mentioned four standard window classes, respectively:

0820

Development of a Management Support System on the Windows Platform (O)

AFX_WND_REG (0x001)
AFX_WNDCONTROLBAR REG (0x002)
AFX_WNDMDIFRAME REG (0x004)
AFX_WNDFRAMEORVIEW REG (0x008)

In the parentheses hexadecimal numbers are assigned for reference.

List 4-4. AfxEndDeferRegisterClass() in WINCORE.CPP

WINCORE.CPP
BOOL AFXAPI AfxEndDeferRegisterClass(LONG fToRegister)

{

// mask off all classes that are already registered
AFX_MODULE_STATE* pModuleState = AfxGetModuleState();
fToRegister &= "pModuleState->m_fRegisteredClasses;
if (fToRegister == 0)

return TRUE;

LONG fRegisteredClasses = 0;

// common initialization

WNDCLASS wndcls;

memset (&wndcls, 0, sizeof (WNDCLASS)); // start with NULL defaults
wndcls.lpfnWndProc = DefWindowProc;

wndcls.hInstance = AfxGetInstanceHandle();

wndcls.hCursor = afxData.hcurArrow;

INITCOMMONCONTROLSEX init;
init.dwSize = sizeof (init);

// work to register classes as specified by fToRegister, populate fRegisteredClasses as we go

if (fToRegister & AFX_ WNDFRAMEORVIEW_REG)

{
// SDI Frame or MDI Child windows or views - normal colors
wndcls.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
wndcls.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
if (_AfxRegisterWithIcon (&wndcls, _afxWndFrameOrView, AFX_IDI STD_FRAME))
fRegisteredClasses = AFX_WNDFRAMEORVIEW_REG;
}

// save new state of registered controls
pModuleState->m_fRegisteredClasses |= fRegisteredClasses;

// must have registered at least as mamy classes as requested
return (fToRegister & fRegisteredClasses) == fToRegister;

0830

0O 0O 0O 0O(@) 0430 020 (0O0O450)

Now Let us take a close look at AfxEndDeferRegisterClass() in WINCORE.CPP(List 4-4). At the
beginning of the helper function, if the present module state (pModuleState->m_fRegisteredClasses) has
already been registered fToRegister, then fToRegister is set to zero and the helper function returns TRUE.
Otherwise fToRegister maintains its passed-in value and fRegisteredClasses is set to zero.

In the middle of the helper function AfxEndDeferRegisterClass()zeroes out a WNDCLASS structure
using memset() so that all fields except those being set explicitly are NULL or zero.
AfxEndDeferRegisterClass() initializes WNDCLASS::IpfaWndProc to DefWindowProc.
DefWindowProc() provides default processing for any window messages that an application does not
processes. The window class's hlnstance handle is initialized to the current instance handle.
AfxEndDefer RegisterClass() sets the window's cursor to the regular arrow cursor. These values are common
among all MFC window classes.

Once the class structure has been zeroed out and the common fields have been initialized,
AfxEndDeferRegisterClass() starts filling the class structure at the end of the helper function, depending on
the window class being registered. Since an argument fToRegister of AfxEndDeferRegisterClass() passes a
window classs AFX WNDFRAMEORVIEW REG in the present case("MSS" system),
AfxEndDeferRegisterClass() is trying to register an SDI frame windows or MDI child windows or views
with the name "AfxFrameOrView42d". It has a style of CS_ DBLCLKS | CS HREDRAW | CS_ VREDRAW.
The background brush is the default color for a window. The window class is registered with the default SDI
frame icon, called AFX IDI STD FRAME. The actual registration is performed by another helper function
_ AfxRegisterWithlcon() in WINCORE.CPP as shown in List 4-5. Here a WNDCLASS-type pointer
variable("pWndCls") is now given a constant pointer to the string("lpszClassName") to which the window
class name "AfxFrameOrView42d" is assigned in our case.

Finally the WNDCLASS structure of "pWndCls" is completely filled out. Then we can now register the
window class by using AfxRegisterClass(pWndCls). However AfxRegisterClass() does nothing except
returning TRUE. As a result AfxEndDeferRegisterClass() sets the global variable fRegisteredClasses to
AFX WNDFRAMEORVIEW REG. MFC uses the global fRegisteredClasses variable to optimize the
window registration. This is important because MFC attempts to register the window classes in many
different places. At the very end of AfxEndDeferRegisterClass(), AFX MODULE_STATE-type pointer
variable pModuleState saves fRegisteredClasses and the helper function AfxEndDeferRegisterClass() returns
TRUE.

List 4-5. _AfxRegisterWithlcon() in WINCORE.CPP

[1/1177/77/77777777777
// Standard init called by WinMain

AFX_STATIC BOOL AFXAPI _AfxRegister WithIcon (WNDCLASS* pWndCls,
LPCTSTR lpszClassName, UINT nIDIcon)
{
pWndCls->IpszClassName = IpszClassName;
HINSTANCE hlnst = AfxFindResourceHandle(
MAKEINTRESOURCE (nIDIcon), RT GROUP_ICON);

0840

Development of a Management Support System on the Windows Platform (O)

if ((pWndCls->hIcon = ::LoadIcon(hInst, MAKEINTRESOURCE (nIDIcon))) ==
NULL) {
// use default icon
pWndCls->hIcon = ::Loadlcon (NULL, IDI_APPLICATION);

}
return AfxRegisterClass(pWndCls);

By now the WNDCLASS structure is completely filled out. AfxEndDeferRegisterClass() uniquely
identifies the class being registered or 0 if an error occurred. And a new window will be created with

CreateWindow() in the next chapter.

b. Creating the Main Window

Now that we have registered the window class, the next initialization process comes into the final step
of creating and showing windows. Let us see the middle part of CFrameWnd::LoadFrame() in
WINFRM.CPP(List 4-3). LordFrame() performs this task by calling the function Create(). The function
Create() here is implemented by CFrameWnd::Create() in WINFRM.CPP as shown List 5-1.

List b-1. CFrameWnd::Create() in WINFRM.CPP

BOOL CFrameWnd::Create (LPCTSTR lpszClassName,
LPCTSTR lpszWindowName,
DWORD dwStyle,
const RECT& rect,
CWnd* pParentWnd,
LPCTSTR lpszMenuName,
DWORD dwExStyle,
CCreateContext* pContext)

HMENU hMenu = NULL;
if (IpszMenuName != NULL)
{
// load in a menu that will get destroyed when window gets destroyed
HINSTANCE hlnst = AfxFindResourceHandle (IpszMenuName, RT MENU);
if ((hMenu = ::LoadMenu (hInst, lpszMenuName)) == NULL)
{
TRACEO("Warning: failed to load menu for CFrameWnd.¥n");
PostNcDestroy); // perhaps delete the C++ object
return FALSE;

m_strTitle = lpszWindowName; // save title for later

0850

0O 0O 0O 0O(@) 0430 020 (0O0O450)

if (!CreateEx(dwExStyle, IpszClassName, lpszWindowName, dwStyle,
rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top,
pParentWnd->GetSafeHwnd), hMenu, (LPVOID)pContext))

{
TRACEO("Warning: failed to create CFrameWnd.¥n");
if (hMenu != NULL)
DestroyMenu(hMenuw);
return FALSE;
}

return TRUE;

CFrameWnd::Create() calls CreateEx()which inherits CWnd::CreateEx() in WINCORE.CPP
(List 5-2). In the argument of the function there are LPCTSTR type local variables IpszClassName that
contains the address of the registered window class ("8") on which we will base a window soon to be created,
and IpszWindowName that contains the address of the window name ("MSS") and so on. In the middle of
the program CWnd::CreateEx() defines a local variable hWnd. The variable hWnd holds the window handle
of the created main frame window. CreateEx() in turn calls the global function ::CreateWindowEx() which

creates an overlapped, pop-up, or child window with an extended window style specified by dwExStyle.

List 5-2. CWnd::CreateEx() in WINCORE.CPP

BOOL CWnd::CreateEx (DWORD dwExStyle, LPCTSTR lpszClassName,
LPCTSTR lpszWindowName, DWORD dwStyle,
int x, int y, int nWidth, int nHeight,
HWND hWndParent, HMENU nIDorHMenu, LPVOID lpParam)

// allow modification of several common create parameters
CREATESTRUCT cs;

cs.dwExStyle = dwExStyle;

cs.lpszClass = IpszClassName;
cs.lpszName = lpszWindowName;
cs.style = dwStyle;

€S.X = X;

CS.y =7V,

cs.cx = nWidth;

cs.cy = nHeight;

cs.hwndParent = hWndParent;
cs.hMenu = nIDorHMenu;

cs.hlnstance = AfxGetlnstanceHandleQ;
cs.IlpCreateParams = IpParam;

if (!PreCreateWindow (cs))

PostNcDestroy O;
return FALSE;

0 860

Development of a Management Support System on the Windows Platform (O)

}

AfxHookWindowCreate(this);

HWND hWnd = ::CreateWindowEx (cs.dwExStyle, cs.lpszClass,
cs.IlpszName, cs.style, cs.x, cs.y, ¢s.cX, cs.cy,

cs.hwndParent, cs.hMenu, cs.hInstance, cs.lpCreateParams);

tifdef DEBUG
if (hWnd == NULL)

{
TRACE1("Warning: Window creation failed: GetLastError returns 0x%8.8X¥n",
GetLastError());
}
#endif

if (1AfxUnhookWindowCreate())
PostNcDestroy O; // cleanup if CreateWindowEx fails too soon

if (hWnd == NULL)

return FALSE;
ASSERT(hWnd == m_hWnd); // should have been set in send msg hook
return TRUE;

When we create a window, Windows does not return a pointer to its internal window structure. Instead
we receive a window handle. We can give the window handle back to Windows whenever we need to identify
the window. The values of the ClassName and WindowName variables are fetched from the program's string
resource pool.

Finally we are ready to create our first window. Although we specified ten different characteristics when
we defined the window class, the CreateEx() function call requires twelve more. Unlike the window class
characteristics, which apply to all windows based on the class, the characteristics supplied in the
::CreateWindowEx () call apply only to the individual window being created. CreateEx() returns TRUE and
Create() returns TRUE in List 5-1.

Our very first window has now been created. The window, although created, has not yet been made
visible. We make the window visible by using the ShowWindow() function in MSS.CPP in List 4-1:
pMainFrame->ShowWindow() inherits CWnd::ShowWindow() which is shown in List5-3.
CWnd::ShowWindow(int nCmdShow) with one argument is overridden by the global function
::ShowWindow(m_hWnd, nCmdShow) with two arguments. That means MFC wraps the Windows API
functions and CWnd::ShowWindow() invokes ::ShowWindow() API function. CWnd encapsulates all the
Windows API functions that take a window handle(HWND m_hWnd), where HWND: data type definition,

0 87no

0O 0O 0O 0O(@) 0430 020 (0O0O450)

a Window handle and m_hWnd: a member variable. Thus ::ShowWindow() is passed two parameters: the
window handle returned by the CreateWindowEx() call(used to identify the window to show) and the

nCmdShow parameter originally passed to WinMain(which specifies how the window should appear):

pMainFrame->ShowWindow(m nCmdShow);
pMainFrame->UpdateWindow();

The ShowWindow() function call displays the window on the screen. The window will be normal-sized,
maximized, or iconic depending on the value of the nCmdShow parameter. When the window is either
normally displayed or maximized(or, conversely, not iconic), the client area of the window will be erased by
painting it with the background brush specified in the window class. Incidentally, the UpdateWindow()
function forces the client area to be updated immediately if it needs it.

CMSSApp::InitInstance() function has now successfully completed its only tasks—creating and
displaying the application's main window—therefore it returns TRUE to WinMain().

List 5-3. CWnd::ShowWindow in WINOCC.CPP

BOOL CWnd::ShowWindow (int nCmdShow)
ASSERT (::IsWindow(m_hWnd));

if (m_pCtrlSite == NULL)

return ::ShowWindow(m_hWnd, nCmdShow);
else

return m_pCtrlSite->ShowWindow (nCmdShow);

6. Summary

We have examined the characteristic mechanism of the Windows programming which fully exploits
object-oriented programming techniques based on the Visual C++ platform. The Visual C++ language
processor invokes a full-featured MFC class library and MFC itself is built upon object-oriented techniques.
Whereas Windows programming techniques provide a comprehensive, robust and visual software developing
environment, their implementation of the objects(i.e. data and procedures) and their mechanism under the
Visual C++ processor are hidden behind the interface that shows up between the language proucessor and the
Windows application.

In the present article we have concentrated on what the initialization processes are all about that the
Windows programming deals with and what their characteristics are. As an example of the Windows
application, we used the MSS system we have recently developed in our Seminars in the Hokusei Gakuen
University. The initialization is comprised of registering window classes and creating the main window.

We started with searching for the WinMain() entry point that every Windows program is supposed to

have. We finally reached the very sites where window classes registration and window creation are

088

Development of a Management Support System on the Windows Platform (O)

performed. The "chasing" processes were exciting and instructive, since we had to thread our way through a
hierarchy of classes, recognizing abstraction (of data and function), inheritance (of all the functionalities
from the "base" to "derived" classes) and polymorphism(via virtual member functions), all of which
characterize the essentials of what classes are which result in understanding the (object-oriented) Windows
programming.

AfxEndDeferRegisterClass() function called by InitInstance()[through CMDIFrameWnd::
LoadFrame()] in MSS.CPP registers window classes which define attributes common to all windows by
filling the WNDCLASS structure. Before a Windows application can display a window, the application has
to register at least one window class. MFC can register four standard window classes.

CFrameWnd::Create() function(called by InitInstance() [through CMDIFrameWnd::LoadFrame()])
calls CWnd::CreateEx(). CWnd::CreateEx() finally calls the global function ::CreateWindowEx() which
creates our main window. Unlike the window class characteristics, which apply to all windows based on that
class, the characteristics supplied in the CreateWindowEx() call apply only to the individual window to be
created.

The window just created becomes visible by executing CWnd::ShowWindow() (called by InitInstance())
which invokes the global ::ShowWindow() API function.

The InitInstance() function successfully completes its only tasks(creating and displaying the

application's main window) and returns TRUE to WinMain().

[Acknowledgments]

The present Management Support System(MSS) interface programs are developed by using Microsoft
Visual C++ ver6.0 under Windows2000 and WindowsXP. The PROLOG program is written in and processed
by Strawberry PROLOG ver2.3 developed by D. D. Dobrev, Sofia, Bulgaria. Strawberry PROLOG performs
under Windows2000 and WindowsXP.

[References]

1) http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vetutor/tutorhm.htm

2) http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_class_library reference
_introduction.asp

3) Noto, Hirosi. Interface Reflecting a Hybrid of the Decision Support System and the Expert System,
Hokusei Review, The School of Economics(Hokusei Gakuen University) Vol. 37, 2000.

4) Noto, Hirosi. Development of a Management Support System On the Windows Platform(I): Class
structure of MFC and creation of user-defined classes, Hokusei Review, The School of
Economics(Hokusei Gakuen University) Vol. 42, No.2, March 2003.

5) George Shepherd and Scot Wingo. MFC Internals, Addison Wesley Developers Press, 1997.

6) Brent E. Rector and Joseph M. Newcomer. Win32 Programming, Addison Wesley, 1997.

7) Aran R. Feuer. MFC Programming, Addison Wesley, 1997.

0890

0O 0 0O 0O(@) 0430 020 (O0O450)

8) Eugene Kain, The MFC Answer Book, Addison Wesley, 1998.

9) John E. Swanke. Visual C++ MFC Programming by Example, R&D Books, 1999.

10) David J. Kruglinski, George Shepherd, and Scot Wingo. Programming Visual C++(fifth edition),
Microsoft Press, 1998.

11) Stephen D. Gilbert and Bill McCarty. Visual C++ 6 Programming Blue Book, CORIOLIS, 1999.

12) Hayasi, Haruhiko. A New Introduction to Visual C++ Ver. 5.0(Beginners edition)(in Japanese),
SoftBank Books, 1998.

13) Yosida, Kouitirou. Kiwameru Visual C++, Gijutu(in Japanese) Hyouron-sya, 1998.

14) Yamasita, Hirosi, Kuroba, Hiroaki, and Kuroiwa, Kentarou. C++ Programming Style(in Japanese),
Ohmsha, 1994.

15) Tijima, Jun'iti. Decision Support System and Expert System(in Japanese), Nikka Giren, 1993.

16) http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfcnotes_tn001.asp.

Notes:

(1) API here refers to Microsoft Platform Win32 Software Development Kit(SDK) Application
Programming Interface(API). SDK provides a set of functions, data types, structures and tools for
writing application programs upon Windows. The core Win32 API covers an extremely broad area of
interfaces such as input and output devices, user interface elements, system services and graphic
elements. MFC logically groups the Windows API using object-oriented principles of abstraction,
encapsulation, inheritance, polymorphism, and modularity.

(2) Unicode is a 16-bit character code that allows us to intermix a variety of international languages in our

application.

oo9on

Development of Management Support System On the Windows Platform(II)

[Abstract]

Development of a Management Support System on the Windows Platform (1)
Registering Window Classes and Creating the Main Window

Hiroshi NOTO

This paper is based on an examination of the mechanism of the Windows programming which fully
exploits object-oriented programming techniques based on the Visual C++ platform. Since the Visual C++
language processor invokes a full-featured MFC class library and MFC itself is built upon object-oriented
concepts, the mechanism of the Windows programming is invisible behind the interface. In this paper, we
have concentrated on the initialization processes of the Windows program and elucidated how and where the
registration of window classes and the creation of the main window are carried out. As an example of a
Windows application, we used the MSS (management support system) that we have recently developed. By
searching for the WinMain() entry point, we finally reached the sites where window classes registration and
window creation were performed. The "chasing" processes were very exciting and instructive, since we had
to thread our way through a hierarchy of classes, recognizing abstraction, inheritance and polymorphism, all
of which characterize the essentials of the object-oriented programming. Before a Windows application can
display a window, the application has to register at least one window class. Unlike the window class
characteristics which apply to all windows based on that class, the characteristics supplied in the window
creation function call apply only to the individual window to be created. The InitInstance() function

successfully completes initialization and returns TRUE to WinMain().

Key words: Object-oriented programming, Windows programming, MFC class library, Initialization,

Window classes registration

oo

b B B OHRE W43k H25 (EBH455)

0920

