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1. Introduction

The purpose of this article is twofold: (1) to develop a management support system (MSS) by C++
on the Windows platform and (2) to examine the inside of the Windows programming by taking our MSS
application as an example. In particular we aim at clarifying the class hierarchy of MFC (Microsoft
Foundation Class) 1ibraryo and understanding the class structure of our own application MSS based on MFC.

We adopt the Microsoft's Visual C++2) on Windows as a language processor. Visual C++ incorporates
the MFC library into its own processing program. MFC is the C++ class library which provides an object-
oriented wrapper around the Window API (Application Programming Interface)S). MEFC helps define the
structure of an application program and handles many routine works on the application's behalf. MFC
simplifies application development and enables us to fully exploit Windows architecture.

Whereas the introduction of MFC provides a full-featured and robust application development
framework, it surely makes the mechanism of the Windows program invisible deep in the MFC library. In
order to get a good skill of Windows programming, therefore, it is desirable and recommendable not only to
make use of the MFC library but to understand the mechanism of the Windows programming, specifically
that of the MFC architecture.

Recently we have developed an MSS applicatio;l)’mwith MFC upon Windows in, Seminar I (for
Juniors) and Seminar IT (for Seniors) I am in charge of in the Hokusei Gakuen University. This means that
we have gotten an example on our own of the Windows program from which we could expand our way of
revealing the MFC-based Windows programming. From an educational perspective, it is worth studying to

have a good grasp of what is going on inside MFC and how MFC handles (API) functions that Windows
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supports. Understanding the internals of MFC will ultimately establish the basis for the students to figure out
the problems (not a few, I guess) they encounter in their works of coding, debugging and applying their skills
to other applications.

Throughout this article and articles to come we are going to present and explain the structure of our
MSS and then to study the inside of the Windows programming, particularly its basic and fundamental
functionalities and techniques with MFC, taking our MSS as an example of MFC-based Windows
programming.

In 8§ 2 we review basic concepts of MFC upon Windows and present a run-down of classes grouped
into four categories. In § 3 we describe what the Management Support System (MSS) we have made looks
like and how it works. We explain the class structure of our MSS and illustrate it diagrammatically in § 4.

The summary of the present article is stated in§ 5.

2. Basic Concepts of MFC upon Windows

Microsoft's MFC (Microsoft Foundation Class) librarl;mizs) designed for an efficient application
framework using Cﬁr):r)ld object-oriented techniques which simplifies software development on Windows
and establishes a foundation to build large-scale applications that use the latest Windows enhancements, such
as COM (Component Object Model) and/or OLE (Object Linking and Embedding) in Microsoft's
terminology. MFC comprises a large number of classes which encapsulate most of the Windows API
(Application Program Interface). The classes are grouped into four categoriesﬁ): General-purpose classes,
Windows API classes, Application framework classes and High-level abstractions.

The general-purpose classes include such object classes as a strings-handling class, collection classes,
exception classes, file classes, time classes and so on. One of the important properties of MFC is to wrap up
the Windows API, hiding all the boilerplate code like window classes, dialog box classes. The Windows API
classes also encapsulate certain Windows objects such as device contexts (device context classes). The
application framework classes handle the large pieces of a whole application. The message-pumping
mechanismlS)and MEFC's document/view architecturg)are encapsulated here. The high-level abstractions include
many useful features such as toolbars, splitter windows, and status lines and so on. Below we exemplify some

of the important classes of each category which we elaborate in the following chapters tracking our

application.

The general-purpose classes:
The general-purpose classes help glue the framework together which include CObject which is MFC's

root class where almost all classes are derived from, the collection classes, the exception-handling classes,
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dynamic strings, file classes, date and time classes and so on.

CObject: CArchive, CRuntime.

Collection classes: CStringArray, CStringList.

CFile.

Graphical Drawing Objects: CGdiObject, CBitmap.

Some other miscellaneous classes: CPoint, CSize, CRect.
CObject: The Mother of (Almost) All Classes
MEC's root class is called CObject. Classes derived from CObject inherit some useful capabilities, including
run-time type identification for the derived class, serialization (the serialization mechanismmreads the RTTI
(run-time type information) information to find a specified class and constructs a new object), diagnostic
functions, and support for dynamic object creation. To supply these benefits, a CObject employs the services
of several other MFC classes: CArchive handles object persistence (i.e. serialization) in conjunction with
CObject. CDumpContext is used by diagnostic functions to output information about an object. CRuntimeClass
is associated with every class derived from CObject and contains information about classs.
Collection classes: CStringArray, CStringList
A collection class manages a group of objects. All MFC's collection classes contain methods to add and delete
elements from the collection, to retrieve elements from the collection, and to iterate over the entire collection.
CFile
Graphical Drawing Objects: CGdiObject, CBitmap.
A Windows GDI (Graphical Device Interface) object is represented by MFC library class. CGdiObject is the
abstract base class for GDI object classes. A Windows GDI objects, therefore, is represented by C++ object of
a class derived from CGdiObject. CBitmap provides an array of bits in which one or more bits correspond to
each display pixel. We can use bitmaps to represent images.

Some other miscellaneous classes: CPoint, CSize, CRect.

Windows API Classes:

One of the most important things MFC does is to wrap up the Windows API, hiding all the grunge and
boilerplate code. The Windows API classes themselves also encapsulate certain Windows objects such as
device contexts. Here is a rundown of several Windows API classes.

Our Application: CCmdTarget, CWinThread, CWinApp.
CWnd:The mother of all Windows.

CFrameWnd: CMDIFrameWnd, CMDIChildWnd.
CWnd Derivatives: Dialogs and Controls: CDialog.

CDataExchange: Dialog Data Exchange and Validation.
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Controls: CButton, CBitmapButton, CComboBox, CEdit, CListBox, CCheckListBox, CStatic
COleControl.

Menus: CMenu.
CCmdTarget, CCmdUI, CWinThread, and the CWinApp classes
These classes are significantly relevant to our applications in Windows programming. Among others, "message
mapping" is crucial and is implemented by the CCmdTarget and CWnd classes. A message map is the
mechanism by which events are mapped to a class's method for handling those events. Any object that is
derived from the CCmdTarget class can have a message map associated with it (the object): the message map
routes commands to the CCmdTaget-derived class. The class handles the messages using various member
functions. The CCmdUI class provides a way for updating the state of a user-interface object, such as a menu
or a checkbox control. The CCmdUI class lets us use messages to cause the command target object to update
the menu status automatically. Before showing the menu items when a menu is clicked, MFC sends command
update messages to the command targets in an application. CWinThread represents a thread of executiorf)\)vithin
an MFC program. MFC supports two different kinds of threads: worker thread (real, preemptive Win32
threads) and user-interface thread. The user-interface thread has windows, and therefore it has its own message
loop. The application must set up a message loop. In Windows, it is the application's responsibility to set up
a message loop: The window procedure WinMain() creates its window and then enters the message loop to
process messages sent to the window, alternately pumping messages, i.e. retrieving messages and dispatching
them to their respective window message handlers. Messages wait in a message queue until they are retrieved.
The worker thread does not have windows, so it does not need to process messages. CWinThread encapsulates
the message loop behavior. The functionality that composes a standard WinMain() function is tucked away
inside the CWinThread class and the libraries that make up MFC. CWinApp, which is derived from
CWinThread, represents the standard Widnows application. CWinApp has overrideable functions we can use
to initialize our application and to perform termination cleanup to suit your own needs.
CWnd: The mother of all Windows
CWnd is the class from which all the windows (such as dialog boxes, controls, and frame windows) are
derived. Because CWnd is derived from CCmdTarget, it can receive and handle messages. Inside CWnd, we
find the specific window's handles: most of the common API functions that operate on a window (such as
ShowWindow( ), MessageBox( ), and MoveWindow()), as well as some new ones that are specific to MFC.
Frame Windows
The main frame window is usually the first window in an application to receive messages. CFrameWnd serves
as the base class for a Single Document Interface (SDI) application's main window. CMDIFrameWnd
provides a main frame window for Multiple Document Interface (MDI) applications, and CMDIChildWnd

provides child windows for an MDI application.
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CWhnd Derivatives: Dialogs and Controls

CWnd serves as a breeding ground for all of Windows' visual interface objects. CDialog and all the controls
are derived from CWnd. They have, therefore, all the same functionality as regular windows, as well as special
functionality specific to themselves.

Dialogs

MEC's dialog boxes are supported by the CDilog class. Almost every Windows-based program uses a dialog
window to interact with the user. A dialog is truly a window that receives messages, that can be moved and
closed, and that can even accept drawing instructions in its client area. The Dialogs let us create either modal
or modeless dialog boxes. With a modal dialog, such as the Open File dialog, the user cannot work elsewhere
in the same application (more correctly, in the same user interface thread) until the dialog is closed. With a
modeless dialog, the user can work in another window in the application while the dialog remains on the
screen.

Dialog Data Exchange and Validation

MEFC has provided a means of initializing dialog controls and automatically extracting the data from them
when the [OK] button is pressed at the end of the dialog. Dialog data exchange and validation (DDX/DDV)
is implemented through the CDataExchange class.

Property Sheets

Property Sheets or tabbed dialogs are useful for reducing the number of dialogs in our application by layering
them all in one dialog. MFC supports property sheets through two classes: CPropertySheet and
CPropertyPage.

Controls

MEFC wraps each of the basic Windows controls into their own classes. All controls are derived from the CWnd
object. The COleControl class is a powerful base class for developing OLE (Object Linking and Embedding)
controls derived from CWnd. An OLE control is an embeddable OLE object that has additional support for
OLE controls interfaces, among which included are required interfaces, optional methods, properties, property
pages, ambient properties, automation methods, event firing, and self registration.

Menus

Windows menus are handled by the CMenu class. All the menuing functionality is encapsulated within CMenu,

including the menu handle and methods to load, update, track, and destroy a menu.

Application Framework Classes:
An application is a superset of a class library. An ordinary library is an isolated set of classes designed
to be incorporated into any program, but an application framework defines the structure of the program itself

and offers all that is needed for a generic application. The application framework classes handle the large
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pieces of a whole application. The message-pumping logic and MFC's document/view architecture are
encapsulated here.

Document/View Architecture: CDocTemplate, CSingleDocTemplate, CMultiDocTemplate,

CDocument, CView.

Document/View Architecture
The idea behind the document/view architecture is to separate actual data from representations of that data. In
other words, for one set of data, you can generate multiple views of it. MFC provides several classes that
implement the document/view architecture. These include the following:
CDocTemplate, CSingleDocTemplate, CMultiDoc Template
The document template is the glue that holds together a document and its views. It is the liaison between
documents, views, and frame windows. A CSingleDocTemplate supports one document at a time, whereas a
CMultiDocTemplate supports multiple documents simultaneously. Both are derived from the CDocTemplate
class.
CDocument
The CDocument class handles the data within our application. Whatever we open using the File/Open is usually
our document. When we derive a class from CDocument, we add variables to hold our data, to code for reading
and modifying our data, and to code for writing our data back out to disk.
CView
A CView represents the actual window we see on our screen. CView, which is derived from CWnd, is what we
use to show our data to the outside world. The view renders our data on an output device such as a screen or
a printer. MFC virtualizes the rendering in such a way that our CView's OnDraw( ) method is called whenever
the view must be rendered and that the code which draws our data on the screen is the same code that renders
our image on the printer. It simply uses a different device context. The device context is the key Graphical
Device Interface (GDI) element that represents a physical device. Each device object has an associated

Windows device context. The view is also a command target, so it can receive your input as well.

High-level abstractions:
MEC provides a number of enhancements to the CView class, one of which is CFormView.
Form View: CFormView.
A CFormView is a scroll view melded with a dialog template. As with a regular dialog box we can plant
various controls (edit boxes, list boxes, radio buttons, and so on). Because the CFormView is derived from a
CScrollView, it has all the other inherent capabilities of a CScrollView, including scrolling, command handling,

and document management through a document template.
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3. Design and Performance of Management Support System (MSS)

1,17)

The MSS system is made up of two subsystems: one is DSS (Decision Support System) and the other
is ES (Expert System). DSS presents a simulation framework (or generator) based on a specific model which
is implemented from outside. The model requires one or more scenarios (usually represented by (a) set(s)
of variables with specified values. We adopt here a "finance model'l'T). The simulation framework realizes "goal-
seek" algorithm such that with a set-up of a specific goal at the final term, the framework calculates the
condition in the initial term necessary to achieve or meet the goal. Executing the simulation model, we finally
obtain the values of all the variables characterizing the scenario. Next the simulation model output is fed into
the ES system. The ES evaluates the input data through the expertise expressed by if-then rules of the system
program. In other words the ES makes reasoning (i.e. theorem proving inference called "resolution refutation
by backward reasoning";)y?ased on the rules and the facts (the latter the simulation output from the DSS),
whether the simulation results satisfy a set of if-then rules. In the present case of a specific problem domain,
the ES can render advice on and recommendation for the financial status of an individual or a business
organization.

We briefly review what our MSS looks like and how the MSS behaves: (1) We look at the layout of
the windows, the contents of the menus, of the dialog boxes and of the property sheets and pages. (2)We
outline the functions assigned to the menus in the main window and to the controls in the dialog boxes. (3)We
list and look over the input and output files which are transferred between the controls and the storage areas
according to the execution of the program.

In MSS we use eight files of which the names and the contents are as follows.

"ve.d": contains the names of variables and commons.*)
(*)In general, variables are grouped into one or more bunches of them called "commons"
which are assigned to their respective models. The MSS requires a specific "model" to carry
out its framework.

"cm.d": describes the relation between "common" and "model".

"csf.d": contains a file name(a complete name including its path) which describes "common" name and
"scenario number".**)
(**)One "scenario number" represents one particular set of values of the variables belonging
to the "common" under consideration. There could be two scenarios or more for one "common".

"cfinl.dat": expresses a set of variables with specified values characterizing common "cfin" and
scenario number "1".

"report.txt": a text file used for remembering intermediate and/or final results and for taking notes

technical or conceptual, about the present simulation and evaluation by executing the MSS.
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"cfinl.pro": the same as "cfinl.dat" in contents. "cfinl.pro", however, comprises part of the Expert
11)
system source codes in PROLOG with its extension "pro".
"analysis.pro": the whole source program written in PROLOG of our Expert system.

"MSSsystem.bmp": a bit map file used as a splash screen that pops up when our MSS first starts up.

The MSS application exploits the MDI (Multi Document Interface) model which supports two or more
documents to be opened at the same time. For the application's "view" we use CFormView as the base class.
The CFormView class is associated with dialog templates that implement the frame (i.e., window)
characteristics and enumerate the controls (i.e., menus, buttons, edit boxes, and so on).

We prepare five document templates which enable us to store and manipulate four document files with
one view each and one document file with two views. The document template class (CDocTemplate)
establishes the relationships among the four classes: the framework class, the document class, the view window
class and the MDI child frame window class. The document template is a "road map" used by the framework
and has pointers to the document, view and child frame classes. The framework instantiates those classes to
create a new child window.

Let us start up the MSS application. A splash screen appears immediately followed by a pop-up dialog
box menu such as the one shown in Fig. 2-1. Selecting "Describe" document template object opens its child
frame window titled "Describe 1" inside the main frame window titled "MSS" (Fig. 2-2). The main window
contains the menu bar on which we can see an item "Describe" in addition to familiar items such as "File" and
"Edit"... A click on "Describe" triggers a drop-down submenu like in Fig. 2-3. Selecting item "common — va
riable" opens another child frame window titled "Ve.d" and executes the assigned command menu handler.
This handler reads "vc.d" file and deals with what the submenu requires: in the edit box "common - variabl
¢", the common name "cfin" in the present case is shown and all the 15 variables belonging to it are displayed
(Fig.2-4). Almost the same processes go on as for the remaining two submenu items: the items "variable —
model" and "common and scenario number — data file name" read "cm.d" and "csf.d" files, respectively.
When we select item "variable - model" a dialog box "Variable and Model" pops up (Fig. 2-5-1). We enter
some variable name in the edit box to find out which model the variable belongs to. A click on [OK] button
opens the third child frame window titled "Cm.d" and starts up a handler searching the array which is created
from "vc.d" file (Fig. 2-5-2). If an element in the array matches the variable name, the handler this time
accesses "cm.d" file with "common" key('cfin") which is known from "vc.d" and finally returns "model" name
that the variable in question belongs to, in the edit box in the child window (Fig.2-5-2). We can create type-
safe arrays for the data of any type by using the generic CArray class. Here if we enter a wrong variable name,
say 'depric', then the handler returns an error message (Fig.2-5-3).

Likewise selecting item "common and scenario number — data file name" opens the fourth child frame
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window titled "Csf.d" and displays in the edit box the "common" name, the "scenario number" and the
complete file name of "Csf.d" including its full path (Fig. 2-6).

Now we use the second document template object by selecting [File/New] menu commands on the
toolbar in the main window. Immediately the standard MFC dialog box pops up again that prompts the user
to select a document-template object. Selecting "Run" document template object opens the fifth child window
"Runl". The menu commands [Run/Execute] on the menu bar in the mainframe window display a pop-up
dialog box(Fig. 2-7-1). The "Execute" command is just about to read the file "Cfinl.dat" and carry out the
simulation with the "Finance Model". Specifying the values for the required items, such as "model name",
"initial time". "final time" and "scenario number", we click on the [OK] button, which brings about the sixth
child window titled "Cfinl". In the child window "Cfinl" we can see the results of our simulation where
looping three times ('.Time' stamped each time) from the initial time('1") to the final time('3"), the program
calculates all the variables in the Cfinl.dat with lists of the items before simulation in the edit box and after
simulation in juxtaposition in addition to the list of required condition for 'Run' execution (Fig. 2-7-2).
Numbers in many figures are read in dollar. The document template "Run" is simply for checking the looping
procedure through the Cfinl. dat as just described above.

Next we select "Goal-seek" document template object. The "Goal-seek" item on the main bar has four
items as the submenu, "Exogenous input variable's dependence on term", "decision variable and iteration",
"execution" and "graphic data generation" (Fig. 2-8-1). The item "Exogenous input variable's dependence on
term" in the drop-down menu owns a cascade menu which has two items "Fixed Rate" and "Fixed Value". Here
we adopt "Fixed Rate" determination of the dependence of a exogenous input variable on the unit time (term
or period) (Fig. 2-8-2). The item "decision variable and iteration" triggers a property sheet titled "decision
variable and iteration". The property sheet enables us to insert a page of controls in a tabbed dialog box. We
can switch from one page to another with a mouse click on the tab. In the present case we have two pages of
which the names appear on the tab at the top of the property sheet: "Alternative" and "Setup Iteration". In
"Alternative" page, we select two decision variables with their time dependence assumed to find out an
alternative course of action (Fig. 2-8-3). In "Setup Iteration" page we refine iteration performance, assigning
the values of the following quantities; "tolerance", "maximum times of iteration", "delta", and "error" (Fig. 2-
8-4). The "goal-seek" operation invokes Newton's method as its simplest case to search for a numerical
solution to the equation. The Newton function evaluates the result to see whether it finds a solution to within
the accuracy specified by "tolerance". The item "maximum times of iteration" designates the maximum number
of steps to take in trying to find a solution. "delta" represents a small interval of increment of the independent
variable in each iteration step. We put a starting value into "error" which is defined as the difference between
the goal and the obtained value in the i-th step (at first i = 0 ). After setting all the conditions for "goal-seek"

iteration on each page we click on [OK] button. Then we can select "execute" in the submenu of the "Goal-
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seek" menu on the toolbar in the main window. Selecting "execute" triggers a dialog box which specifies the
conditions for our goal-seeking analysis such that it calculates the amount of an "exogenous input variable" at
the initial unit time to achieve a desired level of an "output variable" at the final unit time (Fig. 2-8-5).
Immediately after pushing [OK] button, we get in the seventh child window "Cfinl1" as shown in Fig. 2-8-6,
the result of the goal-seek analysis based on the "Finance Model".

We combine the two systems (or modules), DSS (Decision Support System) and ES (Expert System)
to make the present MSS (Management Support System). We are now in a position to consult the facts the
DSS outputs and perform inference invoking the rules stored in ES. We select here "Reasoning" document
template object which opens the eighth child window titled "Reasoningl" (Fig. 2-9-1). The "Reasoning" item
on the main bar has four items as the submenu. "Read Cfinl data", "Insert Cfinl to Analysis.pro", "Execute
Expert System" and "Save 'Report". The item "Read Cfinl data" on the drop-down menu reads "Report.txt"
file. At the same time this submenu reads the facts derived by the "Goal-seek" simulation,i.e. "Cfinl.dat" file
which are shown in the "Cfinl.data" edit box (Fig. 2-9-2). The item "Insert Cfinl to Analysis.pro" reads both
"Cfinl.pro" and "Analysis.pro" program files and "consults" the facts "Cfinl. pro" (the same as the "Cfinl.dat
in contents), i.e. the submenu item directs the facts from the DSS into the ES ("Analysis.pro") for reasoning
as shown in the "Analysis.pro" edit box (Fig. 2-9-2). The item "Execute Expert System" starts up our Expert
system program "Analysis. pro" : Clicking on "Execute Expert System" opens a new window titled
"Analysis.pro" supervised by Prolog compiler, "Strawberry Prolog'fO). In the Prolog window the submenu item
"compile" compiles "Analysis.pro" and the submenu item "run" starts the program in the active window. The
member function pursues inferences based on the rules and the facts. The messages (i.e. the results for the
reasoning) from the ES are sent back to the edit box in the Prolog window as shown in Fig. 2-9-3. The "Save
'Report™ saves the "Report.txt" file which could be used as a memo file which contains all the necessary output
results and the remarks for future use.

Finally we select once again "Goal-seek" document template object. The document template is the same
as the former "Goal-seek" document template and opens the nineth child frame window "Goalseek2". However
this time we click on the "graphic data creation" submenu item brought up from the "Goal-seek" item on the
main bar. The dialog box "Conditions of Drawing Graph" appears for various setups in order to draw a line
chart: "data point number" and "partition number", "maximum value and minimum value on the x-axis scale",
"maximum value and minimum value on the y-axis scale" and "number of grid lines for horizontal lines and
vertical lines" (Fig. 2-10-1). Clicking on [OK] butotn, we show in Fig. 2-10-2 a graph plotting the goal-seck
simulation results, with the abscissa specifying the output variable and the ordinate specifying the exogenous
input variable. The desired value of the goal we set up is shown with red line also in Fig. 2-10-2. We utilize
an ActiveX control to make the program for drawing a line chart and register it as an OCX file in the registry.

An ActiveX control is essentially a simple OLE (Object Linking and Embedding) object [a kind of program]

010



Development of a Management Support System On the Windows Platform (I)

without having to support particular interfaces to qualify as a control. We can add an ActiveX control in the

dialog box like a common control if the ActiveX control is registered as the OCX file in the registry.

4. Class Structure of MSS

In this chapter we present the class hierarchy chart pertaining to the MSS (Management Support
System). In Fig. 4 we display most of the classes of the MFC (Microsoft Foundation Class) library relevant

to our MSS, where we have added twenty four "our 'user-defined classes™ (which are shown as double
squares) to construct the basic structure of our application program.

Most of the classes in the Microsoft Foundation Class Library are derived from a single base class at the
root (the root class, CObject) of the class hierarchy. CObject provides a number of useful capabilities to all
classes derived from it. Those classes can be divided into the following categories:

Application Architecture
File Services

Graphical Drawing
Graphical Drawing Objects
Arrays

Lists

Simple Value Types
Window Support

Frame Windows

Dialog Boxes

Views

Controls

User Windows Support

In the "Application Architecture" category, we derive "CMSSApp" class with the CWinApp class as its
base class. "CMSSApp" provides member functions for initializing our application (and each instance of it)
and for running the application. Each application that uses the Microsoft Foundation classes can only contain
one object (in this case "CMSSApp") derived from CWinApp. As for "Document”" classes we derive four
Document classes, CMSSDoc, CMSS1Doc, CMSS2Doc and CMSS4Doc from the base class CDocument. The
CDocument class provides the basic functionality for "user-defined" document classes. It supports standard
operations such as creating a document, loading it, and saving it. "CMSSDoc" deals with the files "vc.d",
"cm.d" and "csf.d". Likewise "CMSSIDoc" "cfinl.dat" and "CMSS4Doc" "Report.txt". "CMSS2Doc" handles

the files "cfinl.pro" and "Report.txt".
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In the Graphical Drawing Object Category we derive "CWzdBitmap" class from the CGdiObject class.
The CGdiObject class provides a base class for various kinds of Windows graphics device interface (GDI)
objects such as bitmaps, regions, brushes, pens, palettes. We draw a splash screen bitmap for our application
in an instance of "CWzdBitmap".

In the Frame Windows category we have the CMDIFrameWnd class and the CMDIChildWnd class. Both
are derived from the CFrameWnd class which serves for a Windows single document interface (SDI)
overlapped or pop-up frame window. We derive "CMainFrame" from the CMDIFrameWnd class for the
functionality of a Windows multiple document interface (MDI) frame window. Similarly we derive "
CChildFrame" from the CMDIChildWnd class for the functionality of a MDI child frame window. Objects of
class CPropertySheet represent property sheets, otherwise known as tab dialog boxes. A property sheet is
displayed by the framework as a window with a set of tab indices, with which the user selects the current page
and an area for the currently selected page. We make "CSetupAlternative" class derived from the base class
CPropertySheet for preparing two CPropertyPage classes (see the next paragraph).

In the Dialog box category we derive six "user-defined" classes from the base CDialog class: CAboutDlg
, CVarDialog, CSelectDlg, CFixedRateDlg, CSetGoalDIlg and CDataGenDlg. The CAboutDlg class displays
the information on the application's name with its version number and a copyright notice. The CVarDialog
class is responsible for a dialog box which pops up when selecting the menu ["Describe"/ "variable — model
"] in the child frame window "Describel". Likewise the CSelectDlg class is responsible for a popped-up dialog
box when selecting the menu ["Run"/"Execute"] in the child frame window "Runl". The CFixedRateDlg class
manages a dialog box which pops up when selecting the menu ["Goalseek"/"Exogenous input variable's
dependence on term"/"Fixed Rate"] in the child frame window "Goalseek1". The CSetGoalDlg class handles
a popped-up dialog box when selecting the menu ["Goalseek"/"Execute"] in the child frame window
"Goalseek1". The CDataGenDlg class is responsible for a dialog box which pops up when selecting the menu
["Goalseek"/"graphic data creation"] in the child frame window "Goalseek2". The CPropertyPage class is
derived from CDialog. We have derived two classes from the base class CPropertyPage: CAlternative and
Clteration. The class CAlternative defines the attribute of the dialog box with a tab name "Alternative" which
pops up when selecting the menu ["Goalseek"/"decision variable and iteration"] in the child frame window
"Goalseek1". Likewise the class Clteration defines the attribute of the dialog box with a tab name "Setup
Iteration" which pops up when selecting the menu ["Goalseek"/"decision variable and iteration"] in the child
frame window "Goalseek1".

As for View category we derive five classes from the base CView: CMSSView, CMSSI1View,
CMSS2View, CMSS3View and CMSS4View. The CView class provides the basic functionality for "user-
defined" view classes. A view is attached to a document and acts as an intermediary between the document and

the user: the view renders an image of the document on the screen or printer and interprets user input as
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operations upon the document. CMSSView responsible for the child frame window "Describel". Likewise
CMSS1View for "Runl", CMSS2View for "Goalseekl", CMSS3View for "Goalseek2" and CMSS4View for
"Reasoningl". In the Control category we construct "CActiveXCon LChartCtrl" class from the base class "
COleControl" which is a powerful base class for developing OLE controls. Derived from CWnd, this class
inherits all the functionality of a Windows window object plus additional functionality specific to OLE (Object
Linking and Embedding) such as event firing. The "CActiveXCon LChartCtrl" class defines ActiveX control
for drawing a line chart in the child window "Goalseek2". Finally we derive "CWzdSplash" class from the base

calss CWnd, which is responsible for creating a splash screen to display our seminar "logo" along with a

background image.

5. Summary

In the present article we have presented the management support system (MSS) developed in the
'Seminar [' and 'Seminar II' I am in charge of in the Management and Information Department of Hokusei
Gakuen University. The MSS is written in the Visual C++ language processor which basically incorporates
MEC class library. MFC defines the structure of our present application and handles many routine works on
the application's behalf. In order to understand the structure of the MSS it is crucial to comprehend the MSS
class structure itself, in particular its basic and fundamental functionalities and techniques with MFC: first we
describe the basic concepts of MFC and then give a run-down of classes grouped into four underlying
categories. Prior to elaborating the class structure of our MSS we explain the performance of the MSS, i.e.
what the MSS main frame window and child frame windows look like and how the MSS behaves and works
responding to our operation, such as handling the menus, the pop-up dialog boxes and/or property pages and
clicking on the controls and so on. Then we depict and illustrate the relevant twenty four "user-defined classes"
in our MSS which are derived from their respective base classes, each functionally grouped into categories
according to the class chart of the MFC class library. We find that the MSS is realized basically exploiting the
class structure of MFC of which the functionalities are inherited to our "user-defined" classes and which makes

the Windows programming much more efficient, transparent and rewarding.
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Fig. 2-1.
A splash screen immediately followed by
a pop-up dialog box menu.

Fig. 2-2.
A child frame window "Describel" inside
the main frame window "MSS".
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= Fig. 2-3.
A click on "Describe" triggers a drop-
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i Em ] common name "cfin" in the edit box
" "common — variable" in a child frame
4 : window "Ve.d".
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Fig. 2-5-1.
Entering variable 'deprec' in the edit box in
the dialog box "Variable—~Model".

Fig. 2-5-2.

The "model" name 'finance' is looked up
and displayed for variable 'deprec' in the
edit box "Variable—Model" in the child
frame window "Cm.d".

Fig. 2-5-3.
An error message is shown for a wrong
variable name 'depric'.

Fig. 2-6.

Here displayed are the "common" name,
the "scenario" number and the complete
file name of "Csf.d" file in a child frame
window titled "Csf.d" in the edit box
"common and scenario number—data file
name".
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Fig. 2-7-1.

A pop-up dialog box "Specifying items for
'Run"" for four variables with their values
given.

Fig. 2-7-2.

The results of the simulation with the
"Finance Model". Left: a list of the
required condition for 'Run' execution.
Middle: a list of all the items before
simulation. Right: a list of all the items
after simulation, where . Time' is stamped
for each loop.

Fig. 2-8-1.

The "Goal-seek" item on the main bar has
four items as the submenu. The first item
"Exogenous input variable's dependence
on term" in the submenu owns a cascade
menu which has two items.
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Fig. 2-8-2.

A dialog box for "Fixed Rate" determination
of the dependence of a exogenous input
variable on the unit time (term or period).

Fig. 2-8-3.

"Alternative" page in "Decision variable &
ITteration" property sheet specifies two
decision variables with their time dependence
assumed.

Fig. 2-8-4.

"Setup Iteration" page in "Decision variable
& Iteration" property sheet refines iteration
performance assigning the values of relevant
four quantities.
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Fig. 2-8-5.

A dialog box "Conditions for Goal-seck
Simulation" which specifies the conditions
for our goal-secking analysis.

Fig. 2-8-6.

A child window "Cfinl" shows the result
of the goal-seek analysis based on the
"Finance Model".

Fig. 2-9-1.
A child window titled "Reasoningl" has
four items as the submenu.
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Fig. 2-9-2.

In the child window "Report.txt", "Report.txt"
file is read in "Evaluation&Report" edit box,
"Cfinl.dat" file is read in the "Cfinl.data" edit
box, and "Cfinl.pro" file is incorporated into
"Analysis.pro"  program  file in  the
"Analysis.pro" edit box.

Fig. 2-9-3.

A new window titled "Analysis.pro" supervised
by Prolog compiler, "Strawberry Prolog". In
this Prolog window the "Analysis.pro" program
is shown on the left and the messages (i.e. the
results for the reasoning) sent back from ES to
the output window on the right.
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Fig. 2-10-1.

A dialog box "Conditions of Drawing
Graph" establishes various setups for
drawing the line chart.

Fig. 2-10-2.

A graph plotting the goal-seek simulation
results, with the abscissa specifying the
output variable and the ordinate specifying
the exogenous input variable. The desired
value of the goal we set up is also shown
with a red line.
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[Abstract]

Development of a Management Support System
On the Windows Platform (1) :

Class structure of MFC and creation of user-defined classes
Hiroshi NOTO

We present a management support system(MSS) developed in our 'Seminar I' and 'Seminar II' in the
Management and Information Department of Hokusei Gakuen University. The MSS written in Visual C++
basically exploits MFC class library. MFC defines the structure of our application and manipulates routine
works on the application's behalf. We review the basic concepts of MFC and give a run-down of classes
grouped into underlying categories. After looking over the design and performance of our MSS, we
claborate relevant user-defined classes the MSS creates which are derived from their respective MFC base
classes, each functionally grouped into categories according to the class hierarchy chart of the MFC class
library. We find that the MSS is realized basically exploiting the class structure of MFC of which the
functionalities are inherited to our user-defined classes and which makes the Windows programming much

more efficient, transparent and rewarding.

0230



0O 0O 0O() 0420 020 (00O0430)

0240



E & &
LR R SR AET 2 5

B - {7H i IE l

GDI object

1377 8 | GDI objects
l 1

6H T256 8%7H | yvour input ' our input

3R Tho

i
8H Tb 11TH |Likewise HLi5E 2BREITENOBREICSHTRITA, l

OH T#»6 151TH | a exogenous l an exogenous l






