JEEGRGEE) B 37 % March 2000

[Notes & Discussions]

Interface Reflecting a Hybrid of the Decision Support System
and the Expert System
—Instantiation of an Object from the Class for Inference —

Hiroshi NOTO
Chapter 1

INTRODUCTION

The purpose of this article is to present an interface combining the decision support sys-
tem (DSS) and the expert system (ES) to construct a small sized management support sys-
tem (MSS)."? In Seminar ! (for Juniors} and Seminar II (for Seniors) [am in charge of,
we have pursued the above theme by making an interface which is realized in an object ori-
ented language (Visual C++)* "under the Windows OS5 (Windows95 and/or WindowsNT).
The text book® we have selected contains sample programs which deal with the DSS (written
in C language) and the ES (written in PROLOG language) as seperate and independent
modules. The DSS here means a generator or a shell for constructing a specific DSS.
Therefore some model should be incorporated into the generator. Following the example of
the text book we have taken up the 'finance model’ for our specific DSS.

Now the first thing we must do 15 to understand the structure of their programs, espe-
cially their inputs and outputs. Then we examine what kind of interface or program should
be required to connect the DSS and the ES and to execute the ES for theorem proving infer-
ences' based on the rules and the DSS outputs. We have tried to add an interface connecting
the two systems without changing the basic structure of each system to make an hybrid MSS
as a user-friendly Windows applcation.

In Chapter 2 we describe combining the DSS and the ES. The format of the output from
the DSS is shown in 2.1. The PROLOG program and its behavior are displayed in 2.2 which
are pertaining to the merge of the DSS cutput into the ES and to the goal seeking (the proof
search procedure). In Chapter 3 we represent an interface reflecting a hybrid of the two sys-
tems. Chapter 4 is devoted to creating a class for inference. In Chapter 5 the performance of
the present MSS through the interface is exhibited. The summary and the conclusions are
stated in Chapter 6.

— 19—

it E & 8@ Fa1 s

Chapter 2

COMBINING THE DSS AND THE EXPERT SYSTEM

Here are two programs which exemplify the Decision Support System (DSS) generator
or the DSS framework and the Expert System (ES) in the book written by [ijima®. We have
tried to construct a small sized Management Support System (MSS) by combining the two

programs as subsystems.

2.1 Decision Support System (DSS)

The DSS generator written in C language describes a general framework to make a spe-
cific DSS by incorporating a specific model into it. The resulting DSS outputs the data which
are this time to be read into the ES for inference. The output from the DSS represents the
facts which have the form of 'predicate and argument construction’ of the clause in
PROLOG:

{clause) ::= {k-place predicate} { {argumentl?, {argument2},---, {argumentk))

which constitute the well-formed formula'. They are the elements of the first order logic.

For example,

investment (1,280000.000000).

where the symbolic name ‘investment’as a predicate is two-place relation which takes as its
first argument the number of some term and as its second argument the amount of the in-
vestment. The semantics of a representation of the fact specify the interpretation of the

clause as:
"The investment for the first term amounts to $280000.00°.

2.2 Expert System (ES)

The expert system (ES) written in PROLOG makes reasoning based on the rules and the
facts, the latter being the output from the DSS. The rules here are considered to be the exper-
tise transferred from the expert. The rule in the PROLOG language is represented as the
Horn clause (of the first-order logic)""* which is allowed to have one literal {either an atom
or a negated atom} at most in the conclusion, i.e. on the left hand side of the clause (called

the head of the clause). Thus a Horn clause rule has the general form:

P - Qi 9z, O

— 120 —

Interface Reflecting a Hybrid of the Decision Support System and the Expert System

Here ':-' can be read as 'if’ and commas can be read as "and’. The interpretation reads
like:

"For all values of variables occurring in the clause, the head p is true if the tail literals

Qu, """y @, L.e. the right hand side of the clause (called the body of the clause) are true.’

Running a PROLOG program consists mainly of a particular kind of theorem proving

?-p.

Here the goal is expressed as a literal 'p’ and p is a particular theory to be proved. The

goal search procedure is invoked as follows:

(1) A goal literal successfully matches (or unified) with p.

(2) The tail of the clause, qi, qs,-*, q. is instantiated with the substitution of values for

variables derived from this match of (1).

(3)The instantiated literals in the tail can be thought of as subgoals that further invoke
subgoals search procedures (i.e. searching for other rules). And all the subgoals need to

be resolved.

This procedural invocation shows a backward (from the goal) reasoning strategy. The
pattern matching here in PROLOG is what is called unification in logic. In the syntax of
theorem proving in the predicate calculus, it is rather advantageous to negate the goal p first
and next all the remaining subgoals are resolved away by pattern matching to derive the
empty clause, signifying contradiction. Then the goal p is succeeded or satisfiable. The
method of this proving theorem is called resolution refutation which the PROLOG exploits

n its theorem proving.'

In Fig. 1, part of an example of the ES program written in PROLOG is shown. Here the
following sentence in the Fig.1 asks the PROLOG to search the goal "analyze’ i.e. to resolve

away all the clauses in the program by unification.

?- analyze. /* GOAL x/

In the program shown in Fig.1, 'asserta (clause)’ is a built-in predicate which appends a
clause £ the run-time database in its beginning.

-121 —

it E & £ BN S

liab_equ(1,1754671.0000000.
liab_equ(2,2018274.000000) .
liab_equ(3,2256718.000000) .
/#* cfinl_end noto */

/+* EXPERT SYSTEM 'main’*/

/* Goal */
?- analyze,
/* Goalend */

analyze:-
preprocessing,
check,

diagnosis(X),
write(” Therefore,”),
advice(X), nl.

/% EXPERT SYSTEM ’'main” END#*/

/* Expert System */
preprocessing:-
T is 3,

"sousihon_keizyourieki ritsu(T,X1),
asserta(sousihon_keizyourieki_ritsu(T,X1)),
uriagedaka keizyourieki_ritsu(T,X2),
asserta(uriagedaka_keizyourieki_ritsu(T,X2)),
sousihon_kaiten_ritsu(T,X3),
asserta{sousihon_kaiten_ritsu(T,X3}),

TlisT -1,

sousihon_keizyourieki_ritsu{T1,Y1],
asserta(sousihon_keizyourieki ritsu(T1,Y1)),
uriagedaka_keizyourieki_ritsu(T1,Y2),
assertaluriagedaka_keizyourieki ritsu(T1,Y2)),
sousihon_kaiten ritsu(T1,Y3),
asserta{sousihon_kaiten_ritsu(T1,Y3}). J

Fig. 1 Part of an example of the ES program written in PROLOG |anguage.

Chapter 3

INTERFACE REFLECTING THE HYBRID OF THE TWO SYSTEMS

Now we have to combine the two subsystems (or modules) DSS and ES to make the
management support system (MSS). We present here an interface connecting the two subsys-

tems without changing the basic structure of the two modules.

—122—

Interface Reflecting a Hybrid of the Decision Support System and the Expert System

The interface should satisfy the following requirements, The interface enables us

1) to execute the DSS and then

2} to consult the facts the DSS outputs, which means "to read them into the ES’ and fi-
nally

3) to perform inference invoking the rules stored in the ES.

The example of the interface is given in Fig. 2, where there are eight buttons and two
edit boxes. The function of each button appears on its surface.

The upper edit box(Edit boxl} monitors the facts the DSS system gets out and the lower
edit box(Edit box2) displays the merged PROLOG program which the ES is to execute.

Fig. 2 Interface dialog bax combining the DSS and the ES.

—123—

it B @ ®BE BT 8

Chapter 4

CREATING THE CLASS FOR INFERENCE

It is very convenient to create a new class whose functions are to deal with inference. The
new class (named 'Clnference’) has two member variables *Cfinl’ and ’Analysis_pro’ which
hold the text strings of the two files, one for the facts the DSS outputs and the other for the
ES program written in PROLOG, respectively. We define three member functions
'Consult’", Execute Inference’ and 'Project_Inference’, one for reading the facts from the
DSS and adding them to the ES module and another for performing inference with the use of
the facts and the rules and the other for executing the former two functions consecutively.
Fig. 3 gives the definition of the class 'Clnference’, from which a new abject is instantiated

when the interface program runs, i.e. the ES gets executed.

//The definition of a new class Clnference

class Clnference : public CView

{

publie:

Clnference();

DECLARE DYNCREATE(Clnference)

private:
CString Analysis_pro, Cfinl;
CString begin_mark, end_mark;

CString m_filename?;

public:

void Project_Inference(CString,const CString &);
void Execute_Inference();

void Consult(CString, const CStringJ;

public:

virtual “CInference();

}

Fig. 3 Declaration of the class "Clnference’.

Clnference!) and ~Clnference() constructs and destructs the class 'Clnference’, respec-
tively. A member variable 'm_filename2’ specifies the file name of the PROLOG program.
Member variables "begin_mark’ and ’end _mark’ designate the place in the PROLOG pro-
gram where to put in the facts from the DSS. All the member variables are declared "pri-
vate’, since they are referenced only within the *Clnference’ class. Whereas the member func-
tions are declared "public’, since they are all referenced from the 'CView’ class which defines

the interface dialog box and the 'view' of the window in Fig. 3.

— 124 —

Interface Reflecting a Hybrid of the Decision Support System and the Expert System

Chapter &

EXECUTING THE MSS THROUGH THE INTERFACE

Fig. 4 exhibits the result of performing the MSS which consecutively runs the DSS and
the ES. After the execution of DSS is over, the facts are displayed in Edit boxI and the
'Consult’ member function directs the facts into the PROLOG program in the ES. Edit box2
shows the PROLOG program after the facts are merged into the program.

S S

Fig. 4 Theresult of executing the MSS. Edit box1 displays the facts from the DSS and
Edit box2 the PROLOG program after the facts are "consulted’.

—125—

it B @ RE mIS

The member function 'Execute’ pursues inferences based on the rules and the facts, and
the messages (i.e. the results of the reasening) from the ES are sent back to the PROLOG

window which is shown in Fig. 5.

Compiling the file:
C:*¥ Analysis.pro

0 errors, 0 warnings.

sousihon-keizyourieki-ritu ga kakou site imasu.
uriagedaka-keizyourieki-ritu ga zyousyou site imasu.
sousihon-kaiten-ritu ga kakou site imasu.

Therefore, Tokuni, ureyuki, sihon no unyou-kouritu wo kentou si,
kaizensuru hituyou-sel ga arimasu.

Yes.

Fig. 5 An example of the messages of the inferences from the ES.

The last message ‘Yes' means that all the goal and subgoals are resolved away. Those

procedures are handled by the buttons in the interface dialog box as shown in Fig.2.

Chapter 6

SUMMARY AND CONCLUSIONS

We have presented the interface combining the two subsystems, the DSS and the ES with-
out changing the basic structure of the two modules to build the MSS. The interface has en-
abled us to perform the DSS and to direct the facts from the DSS into the ES for reasoning.
The interface merges the facts into the rules in the ES written in PROLOG. Then the ES car-
ries out inference and draws the resolved messages that evaluate the facts which are the out-

put of the DSS simulations based on a specific model, the finance’ model in the present case.

When the interface program runs, an object is instantiated from a newly defined class,
'Clnference’ which in turn performs its member functions handling the MS3S operations
mentioned above. Whereas the new class encapsulates the data and the procedures required by
the DSS and the ES, the realized interface has made the proof search procedures by the DSS
and the ES clearer and their usabilities higher.

ACKNOWLEDGMENTS

The present interface programs are developed by using Microsoft Visual C++ 5.0
nnder Windows95 and WindowsNT. The PROLOG program is written in and processed
by Strawberry PROLOG verl.0 developed by D. D. Dobrev, Sofia, Bulgaria. Strawberry
PROLOG performs under Windows95 and WindowsNT. The version 1.0 is freeware at the

moment.

—126—

Interface Reflecting a Hybrid of the Decision Support System and the Expert System

BIBLIOGRAPHY

9

Peter Jackson. Intorduction to Expert Systems (third edition), Addison-Wesley, 1999,
Efraim Turban and Jay E. Aronson. Decision Support Systems and Intelligent Systems
(fifth edition), Prentice Hall, 1998.

David J. Kruglinski, George Shepherd, and Scot Wingo. Programming Visual C++ (fifth
edition), Microsoft Press, 1998.

Hayasi, Haruhiko. A New Introduction to Visual C++ Ver. 5.0 (Beginners edition) (in
Japanese), SoftBank Books, 1998,

Yamasita, Hirosi, Kuroba, Hiroaki, and Kuroiwa, Kentarou. C++ Programming Style (in
Japanese), Ohmsha, 1994.

Alan R. Feuer. MFC Programming, Addison-Wesley, 1997.

John E. Swanke. Visual C++ MFC Progrmming by Examples, RD Books, 1999,

lijima, Jun'iti. Decision Support System and Expert System (in Japanese), Nikka Giren,
1993.

Ivan Bratko. PROLOG Programming for Artificial Intelligence, Addison-Wesley, 1986.

*) The availability of the built-in procedure ’consult’ depends on the implementation of

PROLOG. We are unable to use this funetion on the Strawherry PROLOG.

—127—

t B & R B3I

[Abstract]

Interface Reflecting a Hybrid of the Decision Support System
and the Expert System
—Instantiation of an Object from the Class for Inference —

Hiroshi NOTO

An interface combining the decision support system (DSS) and the expert system
(ES) is presented to make a small sized management support system (MSS) without
changing the basic structure of the DSS and ES programs. When the interface program
runs, an object is instantiated from the defined class for inference of which the member
functions carry out the MSS. The realized interface makes the proof search procedure by
the DSS and the ES clearer and the usability of the MSS higher.

—128 —

