
Development of a Management Support System

on the Windows Platform (III-Part 2):

Message Pumping and Message Handling

Hiroshi NOTO

Contents

1.Introduction

2.Windows Programming Model

3.Message Map Data Structure and Message Map Macros

4.Windows Message Components and Message Type in Windows

5.How MFC Uses Message Maps and Handles Messages

5.1 Message Handlers as Window Procedures

5.1.1 Window Classes

5.1.2 Traditional Message Loop

5.1.3 Window Procedures

5.2 Message Mapping Architecture

5.2.1 Command-Routing and Message-Dispatching

5.2.2 Subclassing and Superclassing in Hooking

5.2.3 AfxCbtFilterHook()

5.2.3.1 Creating Our Own Window

5.2.3.2 Subclassing an Existing Window

5.2.4 AfxMsgFilterHook()

5.2.5 MFC Windows Wired to AfxWndProc()

Section 5 How MFC Uses Message Maps and Handles Messages

5.1 Message Handlers as Window Procedures

5.1.1 Window Classes

Window“classes”in traditional programming for Windows define the characteristics of

a “class”(not as a C＋＋ class that defines a user-defined data type and that an object is

instantiated from)from which any number of windows can be created. This kind of class is

a template or a model for creating windows. In Windows,every window has its window

class that defines the attributes of the window such as the window’s icon, the window’s

background and the window’s procedure. To create a window class in WinMain(),we call

AfxEndDeferRegisterClass()that accepts a WNDCLASS structure defining the properties of

― ―15

北星論集(経) 第45巻 第１号（通巻第4 号) September 2005

ubclassing and Superclassing,Message Filter

Hook and Computer-Bas

Key words:Command-Routing and Message-Dispatching Architecture,C＋＋ with MFC (Microsoft

Foundation Class)Library on Windows,S

efault Window Procedure and

Universal Window Procedure

Application ed Training ,Hook D

が

い
で
す
。

入
る
場
合
は
良

★
★
注
意
★
★

能
登
論
文
は
単
語
は
す
べ
て
改
行
し
ま
せ
ん
。

ハ
イ
フ
ン
を
自
動
発
生
さ
せ
な
い
）

単
語
と
し
て
ハ
イ
フ
ン

the window class. AfxEndDeferRegisterClass()is already viewed in detail in article (I).

5.1.2 Traditional Message Loop

After the UpdateWindow()call(List 4-1 in(I)),the window is fully visible on the display.

The application program must now make it ready to read keyboard and mouse input from

us. Windows maintains the system queue and a thread message queue for each Windows

application. The keyboard device driver,via Windows,converts an event such as keyboard

input or mouse input into a “message”and places it in the system queue. When the

application program with the input focus attempts to retrieve a message from its application

thread message queue and that queue is empty, Windows looks for a message for that

application in the system queue. It then transfers keyboard and/or mouse messages from

the system queue to the application’s thread queue. The program retrieves these messages

from its thread queue by executing the following “traditional”block of code known as the

message loop which is implemented as a basic while loop :

MSG msg;

while(GetMessage(&msg,NULL,0,0))

｛

TranslateMessage(&msg);

DispatchMessage(&msg);

｝

return msg.wParam;

The MSG structure is a structure that holds all the information about the message.

The message data type structure(MSG)is already explained in Section 4 in (III-1).

The call to GetMessage() tells windows to retrieve the first message in the message

queue (the thread’s message queue, in this case). If a message is available, it is removed

from the queue and copied to msg;otherwise,GetMessage()will not return until there is a

message available. The return value from GetMessage() depends on the message it

retrieved:If it is a WM QUIT message it will return FALSE,if it is not,it will return TRUE.

The message loop provided by MFC then calls the TranslateMessage() function that

translates virtual-key messages (or commonly referred to as keystroke messages) involving

character keys into character messages (i.e.WM CHAR messages). In Windows,“virtual

key code”is a device-independent value translated from the scan code (i.e. two codes:one

when the user presses a key and the other when the user releases the key)by the keyboard

device driver. For example,if we get a WM KEYDOWN message,TranslateMessage()will

add a WM CHAR message to our message queue. This is very useful because the

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

Hereafter the series of our articles“Development of a Management Support System on the

Windows Platform” will be abbreviated as (I),(II),(III-1)or (III-3).

― ―16

WM KEYDOWN only tells us what key has been pressed,not the character itself(i.e.“a”or

“A”). Suppose the keystroke (the pressed key)is A key. Then the WM KEYDOWN for

the virtual key code VK A could mean“a”or“A”,depending on the state of the Caps Lock

and the Shift key. TranslateMessage() does the work of checking whether it should be

capital or not for us. Thus in an MFC application we can use WM CHAR messages without

worrying about virtual key codes and shift states, each WM CHAR message including a

character code that maps directly to a symbol in the ANSI character set (Windows 98)or

Unicode character set (Windows 2000 or Windows XP). More specifically, the character

messages are posted to the thread’s message queue,to be read the next time the thread calls

the GetMessage()function.

The call to DispatchMessage()calls the window procedure associated with the window

that received the message. Messages dispatched with DispatchMessage()generate calls to

the window procedure WndProc(). In a traditional program for Windows,without MFC,all

messages to a window are processed in its window procedure WndProc(). A WndProc()is

associated with a window by means of the “window class registration”process. The

prototype of WndProc()is shown below in the next subsection along with AfxWndProc()(see

the next subsection.). The message loop executes until GetMessage()returns FALSE or 0,

which happens only when a WM QUIT message is retrieved from the message queue. When

this occurs,WinMain()ends and the program terminates. The traditional loop provided by

MFC,just explained above,is sketched in (List 2-4 in (III-1)).

5.1.3 Window Procedures

A Window Procedure is a function called by the Message Loop. Whenever a message

is sent to a window, the message loop looks at the window’s window class and calls the

window procedure passing the message’s information. The two window procedures,one the

old WndProc()and the other AfxWndProc(),are prototyped as follows:

LRESULT CALLBACK WndProc(

HWND hwnd,//handle to window

UINT message,//message identifier

WPARAM wParam,//first message parameter

LPARAM lParam //second message parameter

);

LRESULT CALLBACK AfxWndProc(

HWND hWnd,

UINT nMsg,

WPARAM wParam,

LPARAM lParam

Development of a Management Support System on the Windows Platform (III-Part 2):

― ―17

分

➡
こ
の
部

を
変
え
て
い
ま
す

、
行
送
り

);

The type of handle HWND is the handle to the window that received the message. This

parameter is important since we might create more than one window using the same window

class. The UINT variable message is the message identifier,and the last two parameters

are the parameters sent with the message. Traditionally the typical window procedure is

implemented as a set of switch statements,and a call to the default window procedure. The

following callback WndProc()is an abbreviated set of switch statements just as an example:

LRESULT CALLBACK WndProc(HWND hwnd,UINT message,

WPARAM wParam,LPARAM lParam)｛

switch (message)

｛

case WM CREATE:

//Do some initialization,Play a sound or what ever you want

return 0;

case WM PAINT:

//Handle the WM PAINT message

return 0;

case WM DESTROY:

PostQuitMessage(0);

return 0;

｝

return DefWindowProc(hwnd,message,wParam,lParam);

｝

The switch-case block inspects the message identifier passed in the message parameter and

runs the corresponding message handler. The PostQuitMessage()call sends a WM QUIT

message to the message loop,causing GetMessage()to return FALSE,and the Message Loop

to halt. DefWindowProc()provides default processing for any window messages that are

irrelevant to our application.

5.2 Message Mapping Architecture

5.2.1 Command-Routing and Message-Dispatching

As is seen in 5.1, the messages are handled,at the lowest level, by the message loop,

MFC’s conventional fashion of command-routing architecture. The MFC class library,

however,provides some extra ways of handling messages more efficiently and neatly without

relying on a set of switch statements and v-tables which are assigned to the WndProc()

procedure. Instead of associating the specific message handler with a window, an MFC

program uses message maps to get commands and messages to a command target which is

― ―18

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

derived from the class CWnd. Message maps associate specific commands and

messages with member functions that handle those commands and messages. At the heart

of message-mapping architecture lies a function AfxWndProc(). As we have already seen in

Section 4 in (I)that there are four window classes to be registered. And the AfxWndProc()

is not directly installed through those window classes. However AfxWndProc()is eventually

wired by using Windows hooking mechanism:The CWnd class has a member function

WindowProc();AfxWndProc() ends up calling CWinApp’s m pMainWnd-＞WindowProc();

WindowProc()then routes the message to the right command target.

As is explained in(III-1),there are three types of messages:windows messages,command

notifications, and command messages. The three messages and commands are

categorized into two groups: windows messages (WM messages) and commands

(WM COMMAND notification messages). The MFC message maps deal with both window

messages and commands.

Although there appears no window procedure AfxWndProc()explicitly seen for each of

the four window classes, the commands and messages are surely handled by MFC’s

command-routing and message-dispatching architecture,respectively. We are going to see

in the next article(III-3)in detail that MFC handles WM COMMAND commands through the

command-routing mechanism,which passes a WM COMMAND to the appropriate command

target and that MFC handles a window message through the message-dispatching

mechanism, which passes a WM massage to the appropriate member function of the

window.

The MFC window classes are registered with DefWindowProc(),not with AfxWndProc()

as the message handler, which we have already seen in the AfxEndDeferRegisterClass()

function in (II). The functionality associated with windows is to ensure that every message

in the window is processed. This means that Windows should handle any message we do not

process in our responsibility. The call to DefWindowProc()gives a shot at those messages

which are fundamental to the window functionality and behavior but irrelevant to our

application. On the other hand,the command messages we are concerned with finally end

up in AfxWndProc()and are dispatched to various CWnd-derived command target objects.

It is crucial,therefore,to understand how and why MFC sets up its own window procedure

AfxWndProc(),since this AfxWndProc()lies at the heart of MFC. The entire message map

mechanism whereby MFC routes commands and window messages (such as

WM SETFOCUS)to their handler functions (like OnSetFocus())depends on subclassing (or

superclassing) each MFC-controlled window with the MFC universal window procedure,

AfxWndProc() as the message handler. Here “subclassing” (or superclassing) is the

Windows term for replacing the WndProc of a window with a different WndProc(or calling

the old WndProc for default (superclass)functionality). (see the next subsection.)

5.2.2 Subclassing and Superclassing in Hooking

How is it that the commands and messages end up in AfxWndProc()? We are now going

― ―19

Development of a Management Support System on the Windows Platform (III-Part 2):

to explain the hooking mechanism which enables us to reach eventually AfxWndProc().

MFC maintains two of its own message hooks. The first hook is a message filter hook. A

message filter hook monitors messages generated as a result of input events in a dialog box,

message box,menu,or scroll bar. MFC installs the function AfxMsgFilterHook()as the

message hook. The second hook is to support computer-based training applications. MFC

does not specifically support computer-based training. MFC installs the function

AfxCbtFilterHook()just so that MFC can hook in as soon as a window is created. MFC

cannot wait until CreateWindowEx()returns,because by then a number of messages have

been sent. The CWnd object has to be hooked up and subclasssed before any messages are

delivered to the window. Because messages are directed to the hooks before anything else

happens,there is an opportunity for certain messages to be intercepted in one of these hooks.

As it turns out,MFC uses the computer-based training hook function to attach AfxWndProc()

to the MFC windows as they are created. Here is an answer to how AfxWndProc() is

hooked up to MFC’s windows.

As we have reviewed the message handling mechanism so far,in MFC all windows are

eventually based on the same window procedure (AfxWndProc()). AfxWndProc() once

detects the window (HWND) that a message applies to and dispatches the message to a

virtual function of a CWnd object(OnWndMsg()). The object parses the associated message

map and calls the required handler(if any)or calls the default handler that-in turns-passes

the original message to DefWindowProc()or to an original window procedure existing if the

window was not created by MFC.

It might well be useful for an application to change the “default”window procedure

dynamically at runtime depending on the messages the window receives. Subclassing is such

a technique that allows an application to intercept and process messages sent or posted to a

particular window before the window has a chance to process them by the“default”window

procedure. By subclassing a window,an application can augment,modify,or monitor the

behavior of the window. An application can subclass a window belonging to a system global

window class, such as an edit box or a combo box. For example, an application could

subclass an edit box control to prevent the control from accepting certain characters.

The need of subclassing happens when we have to make a particular task over a

particular message for a variety of different windows. Each different window may be a

CWnd-derived object,but if we have to trap some messages(for example to customize menu

behavior or appearance in the same way for all our windows)we have to re-implement the

same handlers for all the CWnd classes. That is where subclassing may be useful:We create

another object that intercepts the window procedures,and associate an instance of the object

for each of the window. This object defines what to do with the messages and calls the

original window procedure when needed.

On the other hand,Superclassing is a technique that allows an application to create a new

window class with the basic functionality of the existing class,plus enhancements provided

by the application. A superclass is based on an existing window class called the base class.

― ―20

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

Frequently,the base class is a system global window class such as an edit box control,but

it can be any window class. A superclass has its own window procedure, called the

superclass procedure. The superclass procedure can take three actions upon receiving a

message:It can pass the message to the original window procedure,modify the message and

pass it to the original window procedure, or process the message and not pass it to the

original window procedure. If the superclass procedure processes a message,it can do so

before,after,or both before and after it passes the message to the original window procedure.

Unlike a subclass procedure, a superclass procedure can process window creation

messages (WM NCCREATE,WM CREATE,and so on),but it must also pass them to the

original base-class window procedure so that the base-class window procedure can perform

its initialization procedure.

In general “subclassing”or “superclassing”is the Windows term for replacing the

WndProc of a window with a different WndProc or calling the old WndProc for default

(superclass) functionality. This should not be confused with C＋＋ class derivation (The

C＋＋ terminology uses the words“base”and“derived”while the Windows object model uses

“super”and“sub”.). C＋＋ derivation with MFC and Windows subclassing are functionally

very similar,except C＋＋ does not support a feature similar to dynamic subclassing.

5.2.3 AfxCbtFilterHook()

MFC installs the AfxCbtFilterHook()function whenever a new CWnd-derived object is

created. In Section 4 Registering Window Classes in (II),we have seen that CFrameWnd::

LordFrame()calls AfxDeferRegisterClass()which,by definition, invokes a helper function

AfxEndDeferRegisterClass() for registration of the window classes. The helper function

initializes WNDCLASS::lpfnWndProc to DefWndProc(). The definition of this window

procedure is shown in the List 5-1 below. MFC window classes are registered with

DefWindowProc()as the default message handler.

List 5-1.CWnd::DefWindowProc() in WINCORE.CPP

LRESULT CWnd::DefWindowProc(UINT nMsg, WPARAM wParam, LPARAM

lParam)

｛

//Default CWnd implementation

if(m pfnSuper !＝ NULL)

return ::CallWindowProc(m pfnSuper,m hWnd,nMsg,wParam,lParam);

WNDPROC pfnWndProc;

if((pfnWndProc＝ GetSuperWndProcAddr())＝＝ NULL)

return ::DefWindowProc(m hWnd,nMsg,wParam,lParam);

else

― ―21

Development of a Management Support System on the Windows Platform (III-Part 2):

return ::CallWindowProc(pfnWndProc,m hWnd,nMsg,wParam,lParam);

｝

In List 4-3 in (II) the application’s CFrameWnd::LordFrame() further calls the member

function CFrameWnd::Create() (which then calls CWnd::CreateEx()) with the registered

window class name on which we will create a Windows window. As is shown in List 5-2 in

(II), right before CWnd::CreateEx()makes a call to the CreateWindowEx()API function,

CWnd::CreateEx()calls AfxHookWindowCreate()(List 5-2 below). And after creating the

window,CWnd::CreateEx()calls AfxUnhookWindowCreate(). These functions set up and

remove a flag which signifies WH CBT (computer-based training)hook.

Windows calls a WH CBT hook whenever creating or destroying a window.

AfxHookWindowCreate() inserts AfxCbtFilterHook() passing the information about the

window being created (see List 5-2 in WINCORE.CPP). The call to SetWindowsHookEx()

function in AfxHookWindowCreate()installs an application-defined hook procedure into a

hook chain. We could install a hook procedure to monitor the system for certain types of

events. A hook is a callback function in our program that is called from Windows whenever

certain events happen. Because AfxCbtFilterHook()is a computer-based training hook as

noted a little before, Windows calls AfxCbtFilterHook() before activating, creating,

destroying, minimizing, maximizing, moving, or sizing a window. Windows also calls

AfxCbtFilterHook()before completing a system command, before removing a mouse or

keyboard event from the system message queue, before setting the keyboard focus, and

before synchronizing with the system message queue.

List 5-2.AfxHookWindowCreate() in WINCORE.CPP

void AFXAPI AfxHookWindowCreate(CWnd pWnd)

｛

AFX THREAD STATE pThreadState＝ afxThreadState.GetData();

if(pThreadState-＞m pWndInit ＝＝ pWnd)

return;

if(pThreadState-＞m hHookOldCbtFilter＝＝ NULL)

｛

pThreadState-＞m hHookOldCbtFilter＝ ::SetWindowsHookEx(WH CBT,

AfxCbtFilterHook,NULL,::GetCurrentThreadId());

if(pThreadState-＞m hHookOldCbtFilter＝＝ NULL)

AfxThrowMemoryException();

｝

ASSERT(pThreadState-＞m hHookOldCbtFilter !＝ NULL);

ASSERT(pWnd !＝ NULL);

― ―22

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

ASSERT(pWnd-＞m hWnd＝＝ NULL);//only do once

ASSERT(pThreadState-＞m pWndInit＝＝ NULL);//hook not already in progress

pThreadState-＞m pWndInit ＝ pWnd;

｝

Then it is from here that AfxCbtFilterHook() subclasses the window by installing the

generic AfxWndProc(). AfxCbtFilterHook(),however,does not use AfxWndProc()directly

as the window procedure;in other words,how does the hook function get Windows to use

AfxWndProc()?

There are two ways for MFC to subclass the window, depending on whether we create

the window from scratch or we subclass an existing window such as a dialog box control or

the like.

5.2.3.1 Creating Our Own Window

We are now in AfxCbtFilterHook()that sits there receiving messages. As shown in

List 5-3, AfxCbtFilterHook() ignores window messages until the HCBT CREATEWND

code is passed into AfxCbtFilterHook(). When we start from scratch creating our

window, AfxCbtFilterHook()is called with the HCBT CREATEWND code,that means a

window is about to be created. In List 5-3,we find that the hook function attatches HWND

hWnd to the object being created (pWndInit).

List 5-3. AfxCbtFilterHook() in WINCORE.CPP

LRESULT CALLBACK

AfxCbtFilterHook(int code,WPARAM wParam,LPARAM lParam)
｛

AFX THREAD STATE pThreadState＝ afxThreadState.GetData();

if(code!＝ HCBT CREATEWND)
｛

//wait for HCBT CREATEWND just pass others on...

return CallNextHookEx(pThreadState-＞m hHookOldCbtFilter,code,

wParam,lParam);
｝

ASSERT(lParam !＝ NULL);

LPCREATESTRUCT lpcs＝ ((LPCBT CREATEWND)lParam)-＞lpcs;

ASSERT(lpcs !＝ NULL);

CWnd pWndInit ＝ pThreadState-＞m pWndInit;

BOOL bContextIsDLL ＝ afxContextIsDLL;

if(pWndInit !＝ NULL ―― (!(lpcs-＞style& WS CHILD)&& !bContextIsDLL))
｛

anagement Support System on the Windows P

― ―23

Development of a M rm (III-P latfo :t ar 2)

こ

で

こ
か
ら
罫
線

➡

を
変
え
て
い
ま
す
。

囲
っ
た
部
分
の
み
、
３
校
了
時
の
指

示
で
、
行
間

//Note:special check to avoid subclassing the IME window

if(afxDBCS)
｛

//check for cheap CS IME style first...

if(GetClassLong((HWND)wParam,GCL STYLE)& CS IME)

goto lCallNextHook;

//get class name of the window that is being created

LPCTSTR pszClassName;

TCHAR szClassName［ countof(”ime”)＋1］;

if(HIWORD(lpcs-＞lpszClass))
｛

pszClassName＝ lpcs-＞lpszClass;
｝

else
｛

szClassName［0］ ＝ ’¥0’;

GlobalGetAtomName((ATOM)lpcs-＞lpszClass,szClassName,

countof(szClassName));

pszClassName＝ szClassName;
｝

//a little more expensive to test this way,but necessary...

if(lstrcmpi(pszClassName, T(”ime”))＝＝ 0)

goto lCallNextHook;
｝

ASSERT(wParam !＝ NULL);//should be non-NULL HWND

HWND hWnd＝ (HWND)wParam;

WNDPROC oldWndProc;

if(pWndInit !＝ NULL)
｛

♯ifdef AFXDLL

AFX MANAGE STATE(pWndInit-＞m pModuleState);

♯endif

//the window should not be in the permanent map at this time

ASSERT(CWnd::FromHandlePermanent(hWnd)＝＝ NULL);

//connect the HWND to pWndInit...

pWndInit-＞Attach(hWnd);
//allow other subclassing to occur first

pWndInit-＞PreSubclassWindow();

WNDPROC pOldWndProc＝ pWndInit-＞GetSuperWndProcAddr();

ASSERT(pOldWndProc!＝ NULL);

♯ifndef AFX NO CTL3D SUPPORT

― ―24

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

AFX CTL3D STATE pCtl3dState;

DWORD dwFlags;

if(!afxData.bWin4&& !bContextIsDLL &&

(pCtl3dState＝ afxCtl3dState.GetDataNA())!＝ NULL &&

pCtl3dState-＞m pfnSubclassDlgEx !＝ NULL &&

(dwFlags ＝ AfxCallWndProc(pWndInit,hWnd,

WM QUERY3DCONTROLS))!＝ 0)
｛

//was the class registered with AfxWndProc?

WNDPROC afxWndProc＝ AfxGetAfxWndProc();

BOOL bAfxWndProc＝ ((WNDPROC)

GetWindowLong(hWnd,GWL WNDPROC)＝＝

afxWndProc);

pCtl3dState-＞m pfnSubclassDlgEx(hWnd,dwFlags);

//subclass the window if not already wired to AfxWndProc

if(!bAfxWndProc)
｛

//subclass the window with standard AfxWndProc

oldWndProc＝ (WNDPROC)SetWindowLong(hWnd,

GWL WNDPROC,

(DWORD)afxWndProc);

ASSERT(oldWndProc!＝ NULL);

pOldWndProc＝ oldWndProc;
｝

｝

else
♯endif

｛

//subclass the window with standard AfxWndProc

WNDPROC afxWndProc＝ AfxGetAfxWndProc();

oldWndProc＝ (WNDPROC)SetWindowLong(hWnd,

GWL WNDPROC,(DWORD)afxWndProc);

ASSERT(oldWndProc!＝ NULL);

if(oldWndProc!＝ afxWndProc)

pOldWndProc＝ oldWndProc;
｝

pThreadState-＞m pWndInit ＝ NULL;
｝

else
｛

ASSERT(!bContextIsDLL);//should never get here

//subclass the window with the proc which does gray backgrounds

oldWndProc＝ (WNDPROC)GetWindowLong(hWnd,

GWL WNDPROC);

if(oldWndProc!＝ NULL&& GetProp(hWnd, afxOldWndProc)＝＝

NULL)

― ―25

Development of a Management Support System on the Windows Platform (III-Part 2):

｛

SetProp(hWnd, afxOldWndProc,oldWndProc);

if((WNDPROC)GetProp(hWnd, afxOldWndProc)＝＝

oldWndProc)
｛

GlobalAddAtom(afxOldWndProc);

SetWindowLong(hWnd,GWL WNDPROC,

(DWORD)(pThreadState-＞m bDlgCreate?

AfxGrayBackgroundWndProc:

AfxActivationWndProc));

ASSERT(oldWndProc!＝ NULL);
｝

｝

｝

｝

lCallNextHook:

LRESULT lResult ＝ CallNextHookEx(pThreadState-＞m hHookOldCbt

Filter,code,wParam,lParam);
♯ifndef AFXDLL

if(bContextIsDLL)
｛

::UnhookWindowsHookEx(pThreadState-＞m hHookOldCbtFilter);

pThreadState-＞m hHookOldCbtFilter＝ NULL;
｝

♯endif

return lResult;

｝

Then CWnd::GetSuperWndProcAddr() returns an address where the old window

procedure can be saved. This virtual function has a simple default implementation(List 5-4):

List 5-4.CWnd::GetSuperWndProcAddr() in WINCORE.CPP

WNDPROC CWnd::GetSuperWndProcAddr()

｛

//Note:it is no longer necessary to override GetSuperWndProcAddr

//for each control class with a different WNDCLASS.

//This implementation now uses instance data,such that the previous

//WNDPROC can be anything.

return &m pfnSuper;

｝

― ―26

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

Before saving the old window procedure,MFC calls PreSubclassWindow(), another CWnd

virtual function that allows other subclassing to occur first. Finally the hook calls a

function AfxGetAfxWndProc()(as shown in List 5-5)to get the window procedure(see List

5-3 AfxCbtFilterHook.). If the window has the class type registered with AfxWndProc(),

AfxGetAfxWndProc() simply returns the pointer to the AfxWndProc() in a non-DLL

application,but in the case of a DLL the window procedure is stored in the module state(see

AFX MANAGE STATE macro in AFXSTAT .H). That is because the DLL must use the

window procedure of whichever application is calling it at any given time,not its own.

List 5-5.AfxGetAfxWndProc() in WINCORE.CPP

WNDPROC AFXAPI AfxGetAfxWndProc()

｛

♯ifdef AFXDLL

return AfxGetModuleState()-＞m pfnAfxWndProc;

♯else

return &AfxWndProc;

♯endif

｝

In List 5-3,the hook function,here,uses SetWindowLong()to wire AfxWndProc()up to

the window, passing SetWindowLong() three parameters: the handle to the window to

subclass,the GWL WNDPROC flag and the address of the(new)subclass procedure. The

index GWL WNDPROC specifies the action of replacing the window procedure. The return

value of SetWindowLong()is the address of the(previous)original window procedure.

Once AfxCbtFilterHook()is finished,the window is hooked up. Control flows out of

AfxCbtFilterHook() and gets back to CWnd::CreateEx() which now calls

AfxUnhookWindowCreate()to remove the CBT hook. As a result the role of the CBT hook

is to trap the window’s creation so that MFC can subclass the window, that is, install

AfxWndProc().

Here shown is AfxWndProc()in List 5-6 which is stored in WINCORE.CPP,where the

type definition LRESULT is declared as long data type, and the keyword CALLBACK

specifies the stdcall calling sequence to be used to push some number of parameters on the

stack in right-to-left ordering so as to pass them to the function(To see this,move the caret

to our desired data type and press F12,while interacting in VC＋＋ 6.0.). AfxWndProc()

returns an LRESULT value. A callback function is a function in an application that

Windows calls back with information requested.

― ―27

Development of a Management Support System on the Windows Platform (III-Part 2):

List 5-6.AfxWndProc() in WINCORE.CPP

LRESULT CALLBACK

AfxWndProc(HWND hWnd,UINT nMsg,WPARAM wParam,LPARAM lParam)

｛

//The WndProc for all CWnd’s and derived classes

//special message which identifies the window as using AfxWndProc

if(nMsg ＝＝ WM QUERYAFXWNDPROC)

return 1;

//all other messages route through message map

CWnd pWnd＝ CWnd::FromHandlePermanent(hWnd);

ASSERT(pWnd !＝ NULL);

ASSERT(pWnd-＞m hWnd＝＝ hWnd);

return AfxCallWndProc(pWnd,hWnd,nMsg,wParam,lParam);

｝

5.2.3.2 Subclassing an Existing Window

The second case is where we subclass an existing window. Suppose we are again in

AfxCbtFilterHook(). An example of “3D (three dimensional) controls and dialogs”is

d i s p l a y e d b e t w e e n t h e c o n d i t i o n a l c o m p i l a t i o n g r o u p s ♯ i f n d e f

AFX NO CTL3D SUPPORT and ♯endif in List 5-3. It is said that the main reason

Microsoft shifted from using AfxWndProc()as the registered window procedure to using

DefWindowProc()is to support 3D controls which work through Microsoft’s CTL3D.DLL(or

CTL3D32.DLL). In order for 3D controls to work,MFC had to ensure that the subclassing

is in the following order:DefWindowProc()→ CTL3D’s WndProc()→ AfxWndProc(). What

this ordering indicates is that Microsoft had to allow CTL3D to subclass before

AfxWndProc(),which means delaying hooking up AfxWndProc()until after pCtl3dState-＞

m pfnSubclassDlgEx() is called. In this example, MFC registers everything with

DefWindowProc(), subclasses calling CTL3D.DLL (or CTL3D32.DLL), and subclasses the

window by calling SetWindowLong()to install AfxWndProc()through AfxGetAfxWndProc().

The application framework also subclasses an instance of a window by directly calling

the SetWindowLong()function without using any hooks. The subclass procedure can reside

in either the application’s executable or a dynamic-link library (DLL). SetWindowLong()

returns the address of the window’s original window procedure. The application must save

the address and use it in subsequent calls to the AfxCallWndProc()(or CallWindowProc())

function,in order to pass intercepted messages to the original window procedure when the

messages are not processed by the new window procedure. The application must also have

the original window procedure address to remove the subclass from the window. To remove

― ―28

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

the subclass,the application calls SetWindowLong()again,passing the address of the original

window procedure with the GWL WNDPROC flag and the handle to the window.

5.2.4 AfxMsgFilterHook()

AfxMsgFilterHook()is another MFC hook procedure for the flag WH MSGFILTER

hook. The WH MSGFILTER hook is a task-specific hook that enables an application to

monitor messages passed to a menu,scroll bar,message box,or dialog box created by the

application that installed the hook procedure. AfxMsgFilterHook()procedure is called by

the application after a message generated by an input event (in a dialog box,message box,

menu,or scroll bar)is retrieved from the message queue. Since messages sent directly to the

window procedure (by SendMessage()) do not go through the message queue, this hook

procedure cannot be called by Windows and cannot be used to monitor messages that are sent

(by“Windows”or by the user)to a dialog box,message box,menu,or a scroll bar.

In a typical MFC application the WH MSGFILTER is set in the global function

AfxInitThread()with AfxMsgFilterHook()as the callback or the hook procedure. The

callback function for this hook is called after these messages are retrieved from the queue,

just before dispatching them. ProcessMessageFilter() of CWinThread is called from the

AfxMsgFilterHook()hook procedure.

In general, all the keyboard and mouse messages, along with the WM PAINT and

WM TIMER messages,are posted to the message queue. ProcessMessageFilter()will not

be called for messages like WM SETFOCUS, WM KILLFOCUS, WM SETCURSOR,

WM COMMAND,WM CTLCOLOR,WM ACTIVATE,etc.,since these are sent directly to

the window procedure.

Here we are going to trace the AfxMsgFilterHook()(i.e.where the hook procedure is

installed into a hook chain and where its installation calls the filter function) in our

application MSS (Management Support System). Now we pursue AfxMsgFilterHook()

starting with AfxWinMain(), followed by the functional chain that reaches the

AfxMsgFilterHook() that in turn calls ProcessMessageFilter() to monitor messages

retrieved from the message queue:AfxWinMain()→ AfxWinInit()→ AfxInitThread()→

::SetWindowsHookEx()→ AfxMsgFilterHook()→ ProcessMessageFilter().

Suppose we start the MSS application, control immediately arrives at AfxWinMain()

which is shown in List 3-3 in (I). AfxWinMain() calls AfxWinInit() for AFX internal

initialization. At the very end of the AfxWinInit()(List 3-5 in (II))AfxInitThread()is called

that is shown in List 5-7.

List 5-7.AfxInitThread() in THRDCORE.CPP

void AFXAPI AfxInitThread()

｛

if(afxContextIsDLL)

― ―29

Development of a Management Support System on the Windows Platform (III-Part 2):

｛

//set message filter proc

AFX THREAD STATE pThreadState＝ AfxGetThreadState();

ASSERT(pThreadState-＞m hHookOldMsgFilter＝＝ NULL);

pThreadState-＞m hHookOldMsgFilter＝::SetWindowsHookEx(WH MSGFILTER,

AfxMsgFilterHook,NULL,::GetCurrentThreadId());

♯ifndef AFX NO CTL3D SUPPORT

//intialize CTL3D for this thread

AFX CTL3D STATE pCtl3dState＝ afxCtl3dState;

if(pCtl3dState-＞m pfnAutoSubclass !＝ NULL)

(pCtl3dState-＞m pfnAutoSubclass)(AfxGetInstanceHandle());

//allocate thread local AFX CTL3D THREAD just for automatic

termination

AFX CTL3D THREAD pTemp＝ afxCtl3dThread;

pTemp;//avoid unused warning

♯endif

｝

｝

AfxInitThread() is a global function for thread initialization and thread cleanup. In the

middle of List 5-7 we find that the call to ::SetWindowsHookEx(), as in the case of

AfxCbtFilterHook(),sets the message filter procedure AfxMsgFilterHook()along with the

type of hook procedure WH MSGFILTER. List 5-8 displays the content of this callback

function.

List 5-8. AfxMsgFilterHook() in THRDCORE.CPP

LRESULT CALLBACK AfxMsgFilterHook(int code,WPARAM wParam,LPARAM

lParam)

｛

CWinThread pThread;

if(afxContextIsDLL ―― (code＜ ０ ＆＆ code!＝ MSGF DDEMGR) ――

(pThread＝ AfxGetThread())＝＝ NULL)

｛

return ::CallNextHookEx(afxThreadState-＞m hHookOldMsgFilter,

code,wParam,lParam);

｝

― ―30

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

ASSERT(pThread !＝ NULL);

return (LRESULT)pThread-＞ProcessMessageFilter(code,(LPMSG)lParam);

｝

In List 5-8 AfxMsgFilterHook()returns CWinThread::ProcessMessageFilter()at the very

end of the function. In List 5-9 shown is the process message filter CWinThread::

ProcessMessageFilter().

List 5-9 .CWinThread::ProcessMessageFilter() in THRDCORE.CPP

BOOL CWinThread::ProcessMessageFilter(int code,LPMSG lpMsg)

｛

if(lpMsg ＝＝ NULL)

return FALSE;//not handled

CFrameWnd pTopFrameWnd;

CWnd pMainWnd;

CWnd pMsgWnd;

switch (code)

｛

case MSGF DDEMGR:

//Unlike other WH MSGFILTER codes,MSGF DDEMGR should

// never call the next hook.

//By returning FALSE,the message will be dispatched

// instead (the default behavior).

return FALSE;

case MSGF MENU:

pMsgWnd＝ CWnd::FromHandle(lpMsg-＞hwnd);

if(pMsgWnd !＝ NULL)

｛

pTopFrameWnd＝ pMsgWnd-＞GetTopLevelFrame();

if(pTopFrameWnd !＝ NULL ＆＆

pTopFrameWnd-＞IsTracking()＆＆ pTopFrameWnd-＞m bHelpMode)

｛

pMainWnd＝ AfxGetMainWnd();

if((m pMainWnd !＝ NULL)＆＆ (IsEnterKey(lpMsg)

―― IsButtonUp(lpMsg)))

｛

― ―31

Development of a Management Support System on the Windows Platform (III-Part 2):

pMainWnd-＞SendMessage(WM COMMAND,ID HELP);

return TRUE;

｝

｝

｝

// fall through...

case MSGF DIALOGBOX: //handles message boxes as well.

pMainWnd＝ AfxGetMainWnd();

if (afxData.nWinVer ＜ 0x333 ＆＆ pMainWnd !＝ NULL ＆＆

IsHelpKey(lpMsg))

｛

pMainWnd-＞SendMessage(WM COMMAND,ID HELP);

return TRUE;

｝

if(code＝＝ MSGF DIALOGBOX ＆＆ m pActiveWnd !＝ NULL ＆＆

lpMsg-＞message＞＝ WM KEYFIRST ＆＆ lpMsg-＞message＜＝

WM KEYLAST)

｛

//need to translate messages for the in-place container

AFX THREAD STATE pThreadState＝ afxThreadState.GetData();

if(pThreadState-＞m bInMsgFilter)

return FALSE;

pThreadState-＞m bInMsgFilter＝ TRUE;//avoid reentering this code

MSG msg ＝ lpMsg;

if(m pActiveWnd-＞IsWindowEnabled()＆＆ PreTranslateMessage(＆msg))

｛

pThreadState-＞m bInMsgFilter＝ FALSE;

return TRUE;

｝

pThreadState-＞m bInMsgFilter＝ FALSE;//ok again

｝

break;

｝

return FALSE;//default to not handled

｝

Immediately after ::SetWindowsHookEx(WH MSGFILTER, AfxMsgFilterHook, NULL,

― ―32

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

::GetCurrentThreadId())is called,our MSS application displays a splash screen and a pop-up

dialog box menu appears (Fig. 2-1 in (I)). Then we realize that control arrives at

CWinThread::ProcessMessageFilter() through AfxMsgFilterHook() with the flag

WH MSGFILTER and comes into the switch statement and jumps to the case label

MSGF DIALOGBOX. Thus we can monitor the message generated by an input event in the

dialog box,after it is retrieved from the message queue.

5.2.5 MFC Windows Wired to AfxWndProc()

Once AfxCbtFilterHook()is finished,the window is hooked up. Now why do we have

to call SetWindowLong()function to subclass the window(e.g.change the window procedure)

after the window is created? The reason is that our window object could never get a chance

to handle WM CREATE and WM NCCREATE, because these messages are sent by

Windows itself from within ::CreateWindowEx()where Windows is creating the window.

Then how can MFC hook up our window before MFC calls CreateWindowEx()? The answer

is that “MFC sets a hook before Windows sends any messages to the window procedures.”

At this point of the control flow,Windows has already called the CBT hook after Windows

created the window. Therefore MFC can get both a valid HWND type of the window and

the WH CBT hook. We emphasize again that the role of the CBT hook is to trap the

window’s creation and to enable MFC to subclass the window, that is, to install

AfxWndProc().

From now on,messages for that window will go to AfxWndProc(), where they are

handled by command-routing and message-dispatching architecture. So even though the

window was originally registered with DefWindowProc()as the message-handling procedure,

the framework effectively wires the windows up to AfxWndProc()whenever a CWnd-derived

window is created.

It should be noted finally again that the reason for the existence of CBT hook is to trap

the window’s creation so that MFC can subclass the window to install AfxWndProc(). It is

important to realize that the message-routing code is universal for all window classes and

that MFC uses the same universal AfxWndProc()for all window objects.

― ―33

Development of a Management Support System on the Windows Platform (III-Part 2):

BIBLIOGRAPHY

⑴ Noto,Hirosi. Development of a Management Support System On the Windows Platform (I):

Class structure of MFC and creation of user-defined classes,Hokusei Review,The School of

Economics (Hokusei Gakuen University)Vol.42,No.2,March 2003.

⑵ Noto,Hirosi.Development of a Management Support System on the Windows Platform (II):

Registering Window Classes and Creating the Main Window,Hokusei Review,The School of

Economics (Hokusei Gakuen University)Vol.43,No.2,March 2004.

⑶ Noto,Hirosi.Development of a Management Support System on the Windows Platform(III-Part

1): Message Pumping and Message Handling, Hokusei Review, The School of Economics

(Hokusei Gakuen University)Vol.44,No.1,March 2005.

⑷ Brent E.Rector and Joseph M.Newcomer.Win32 Programming,Addison Wesley,1997.

⑸ Charles Petzold.Programming Windows 5th Edition,Microsoft Press,1999.

⑹ http://msdn.microsoft.com/library/default.asp?URL＝/library/devprods/vs6/visualc/vctutor/

tutorhm.htm

⑺ http://msdn.microsoft.com/library/default.asp?url＝/library/en-us/vclib/html/mfc class

library reference introduction.asp

⑻ George Shepherd and Scot Wingo.MFC Internals,Addison Wesley Developers Press,1997.

⑼ Jeff Prosise.Programming Windows with MFC 2nd Edition,Microsoft Press,1999.

Aran R.Feuer.MFC Programming,Addison Wesley,1997.

David J. Kruglinski, George Shepherd, and Scot Wingo. Programming Visual C＋＋ (fifth

edition),Microsoft Press,1998.

Stephen D.Gilbert and Bill McCarty.Visual C＋＋ 6 Programming Blue Book,CORIOLIS,1999.

Hayasi,Haruhiko.A New Introduction to Visual C＋＋Ver.5.0(Beginners edition)(in Japanese),

SoftBank Books,1998.

Yosida,Kouitirou.Kiwameru Visual C＋＋,Gijutu (in Japanese)Hyouron-sya,1998.

Yamasita, Hirosi, Kuroba, Hiroaki, and Kuroiwa, Kentarou. C＋＋ Programming Style (in

Japanese),Ohmsha,1994.

http://msdn.microsoft.com/library/default.asp?url＝/library/en-us/vclib/html/ mfc msg

structure.asp

Paul DiLascia,Microsoft System Journal (1999)

http://www.microsoft.com/msj/0699/c/c0699.aspx

THE MICROSOFT KNOWLEDGE BASE

http://www.sunsite.org.uk/sites/ftp.microsoft.com/MISC1/DEVELOPR/VISUAL C/KB/

Q166/2/12.TXT

― ―34

北 星 論 集(経) 第45巻 第１号（通巻第4 号)

［Abstract］

Development of a Management Support System

on the Windows Platform (III-Part 2):

Message Pumping and Message Handling

Hiroshi NOTO

This paper studies the mechanism of message pumping and message handling on the

Windows platform. The architecture of processing messages forms the core of the Windows

Programming Model that realizes the event-driven programming technique on it. Windows

calls the function associated with a window when an event occurs that might affect the

window,passing messages in the argument of the call that describe the event. The message

pump is a program loop that retrieves input messages from the application queue,translates

them,and dispatches them to the relevant window procedures (i.e.functions). In the C＋＋

processor with MFC (Microsoft Foundation Class)class library, the message routing and

handling system called “message mapping”is implemented. MFC’s message mapping

technology neatly associates window messages and commands to the member functions of

classes in windows. MFC provides message macros to generate message maps, which

expand into code that defines and implements a message map for a CCmdTarget-based class.

MFC’s standard message-mapping is a reasonable alternative to handling messages via

virtual class member functions,which have been carried out on the original Windows. The

MFC’s standard message-mapping eliminates the overhead of erroneous vtables (virtual

function tables),it is compiler independent,and it is fairly efficient. It is possible to have a

good grasp of how MFC handles the application aspect(initialization and message pump)and

the window aspect (message handling)of a Windows application program by taking a close

look at internals of MFC and by keeping track of the function calling series triggered by

PumpMessage()of our own MSS (Management Support System)application as an example

of message pumping and message handling.

Key words:Command-Routing and Message-Dispatching Architecture,C＋＋ with MFC (Microsoft

Foundation Class)Library on Windows,Subclassing and Superclassing,Message Filter

Hook and Computer-Based Training Application Hook,Default Window Procedure and

Universal Window Procedure

― ―35

Development of a Management Support System on the Windows Platform (III-Part 2):

